

Quality of Service in a flash-based OpenStack Environment

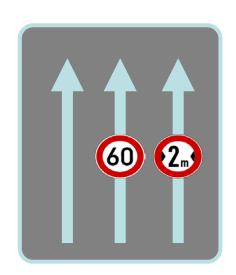
Salil Gokhale Sr. Product Manager, HP Storage

Why Quality of Service?

Performance provisioning at a granular level.

Controls on transaction (IOPS) and throughput (GB per second) performance, first set on a LUN basis and at the single VM level in the future.

'Noisy neighbors' disrupt cloud and enterprise storage delivery.


When an application or VM spikes up its performance utilization and leaves less controller caching and flash resources available for other applications, customers feel the adverse affects of 'noisy neighbors.'

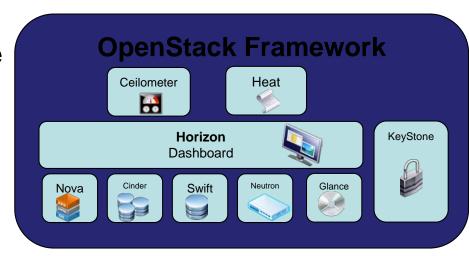
This limitation is a major reason why it is so difficult for cloud storage providers to create consistent multi-tenant environments using traditional storage systems which lack Storage QoS.

How can OpenStack QoS with Flash help you?

- Differentiation of workloads on the same Storage array.
- For OpenStack, QoS is part of the Standard interface provided by the Cinder Block Driver
- Take advantage of Data Compaction Technologies available on All Flash Arrays (AFA).
- Satisfy wide range of QoS rules using a single array.
- Decreased storage rack space requirements
- Reduced power and cooling costs

Cost is a key driver

- All-flash solution costs have declined significantly over the past few years
- All-flash systems consistently moving to cheaper NAND


Source: @ Wikibon 2015. 4-Year Cost/TB Magnetic Disk & SSD, including Packaging, Power, Maintenance, Space, Data Reduction & Data Sharing

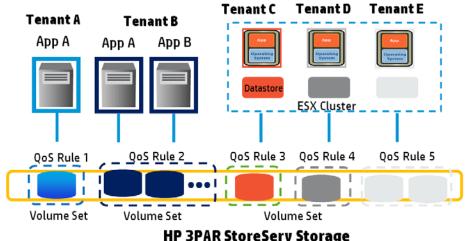
OpenStack Overview

OpenStack framework includes the following modules:

- Nova for Virtual Machines / Compute
- Cinder for Block Storage
- Swift for Object Storage
- Neutron for Networking
- Horizon for Dashboard
- Keystone for Identity Services
- Glance for Image Services
- Ceilometer for Telemetry
- Heat for Orchestration

Volume Type: QoS Specs

- Volume Type defines a collection of criteria/capabilities used to describe a particular service level.
- QoS Specs define Quality-of-Service(QoS) rules for volumes
- QoS Specs can be enforced either at
 - the storage subsystem "backend"
 - the hypervisor "frontend"
 - both


- Backend Vendor specific rules (examples)
 - HP 3PAR (IOPS and bandwidth: min, max; latency goals, priority)
 - Solidfire (IOPS: min, max, burst)
- Frontend
 - Limit by throughput
 - Total bytes/sec, read bytes/sec, write bytes/sec
 - Limit by IOPS
 - Total IOPS/sec, read IOPS/sec, write IOPS/sec

HP 3PAR - QoS

The QoS Specification within the 3PAR Cinder Driver supports the following:

- Minimum bandwidth goal
- Maximum bandwidth limit
- Minimum IOPS goal
- Maximum IOPS limit
- Latency goal
- Priority

HP 3PAR StoreServ Storage

It's how you use it

- All-flash is rapidly becoming mainstream
- Cost and reliability are key in fueling this change
- Moving to newer and cost effective media is investable
- An architecture that can take advantage of this is critical

There can be economy only where there is efficiency
- Benjamin Disraeli

Architecture. Matters

HP 3PAR StoreServ Greatest Competitive Advantage

Architecture Whitepaper: http://h20195.www2.hp.com/V2/GetPDF.aspx%2F4AA3-3516ENW.pdf
Flash Optimized Whitepaper: http://h20195.www2.hp.com/V2/GetPDF.aspx%2F4AA4-7264ENW.pdf
Thin Technologies Whitepaper: http://h20195.www2.hp.com/v2/GetPDF.aspx%2F4AA3-8987ENW.pdf

Priority Optimization (Storage QoS)Whitepaper: http://h20195.www2.hp.com/V2/GetPDF.aspx%2F4AA4-7604ENW.pdf

OpenStack Whitepaper: http://www8.hp.com/h20195/v2/GetPDF.aspx%2F4AA5-1930ENW.pdf