

Why SSDs Should Be Utilized For All Data Center Workloads Even Secondary Ones

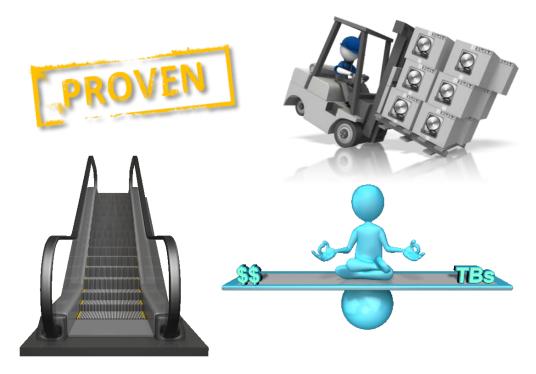
FMS 2015

Dragon Slayer Consulting – Marc Staimer CDS

Agenda

- Conventional HDD & SSD Wisdom
- Fact Checking Conventional Wisdom
- The Value Of Time
- Comparing HDDs & SSDs
- Conclusions
- Q&A

Pay Attention, You Might Miss Something



HDD Conventional Wisdom

- Reliable
- High capacity/density
- Balanced costs
- Good enough performance

HDD Conventional Wisdom

- Avg failure rates
- High weight
- Slow performance/> latency
- Cost declinations decreasing

HDD Reality

HDD Reliability

Reliability	Perception	Reality
MTBF	High @ 1.5M hrs	< 100,000 hrs
HDD Failures	Individually	In Bunches
BER	SAS 10 ¹⁶	> BER/GB
DLN	SATA 10 ¹⁵	
RAID	Known, proven, & good	Rebuilds too long
NAID	enough	> risk data loss
Wide-stripe RAID	Faster rebuilds	+>% of data loss
MCM	Dial up/down DP	Consumes > storage
Erasure Codes	Dial up/down DP	Adds latency

HDD Unique Corruption

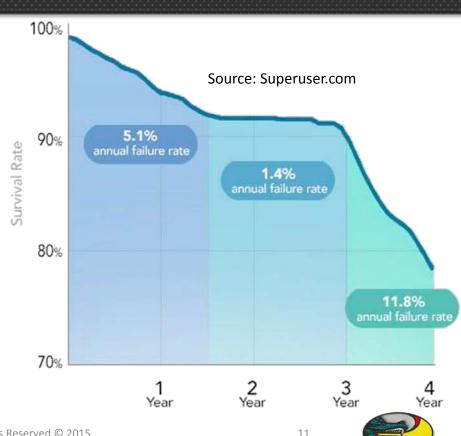
Silent Data Corruption

- Torn/lost/misplaced writes HDD controller misses
- Doesn't inform RAID controller
- Parity pollution locks in no correction possible
- 10x > % on SATA vs SAS

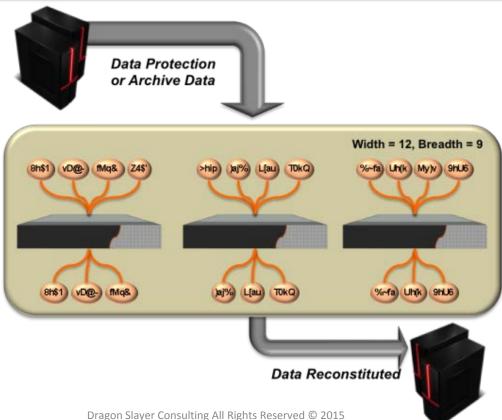
HDD Rebuilds Take A Very Long Time

Rebuilds used to be measured in hours

- Today rebuilds are measured in days, weeks, even months
 - Depends on priority
- During rebuilds
 - Controller performance declines
 - Data loss risk increases



HDD Failure Rates Increase Over Time


Traditional parity RAID

- Not keeping pace w/HDD density
- Part of that is unrecoverable BER
- BER unchanged
 - 1, 2, 3, 4, 6, 8, 10 TB the same
 - SATA -10^{15}
 - \bullet SAS 10^{16}
- > capacity = > BER/GB

FMS 2015

What Exactly Are Erasure Codes?

12

HDD Density

Density	Perception	Reality
Capacity	Highest	LFF up to 10TB, SFF up to 1.2TB.
Density Footprint	Highest	LFF raw yes up to 840TB/4U: no for primary data reduced.
Weight	Manageable	SFF true, LFF not. High density racks can weigh > 250lbs.
Data Reduction	Good	Secondary data true (~4:1 or
Data Reduction	Good	betterr); Primary data not true (~2:1)
Sorviceability	SFF true, LFF HD racks, not true,	
Serviceability Easy		ladders & server lifts.

13

HDD Performance

Performance	Perception	Reality
Latency	Fair	Poor
IOPS	OK w/high RPM SFF & short-	Not good w/random IOPS. Short-
1073	stroking or DRAM caching	stroking kills 2/3 capacity
Throughput	Good	Sequential reads & writes yes,
rnrougnput	Good	random IOPS no

HDD Cost

Cost: \$/GB	Perception	Reality
Acqusition	Lowest	LFF true, SFF sometimes
Power & cooling	Highest	True for all form factors
\$/IOPS/GB	Highest	Getting higher
Productivity	Adequate	Large productivity losses
тсо	Lowest	LFF mostly true, often not,
100	Lowest	& not true for SFF

HDD Revenue Impact

Rev Impact	Perception	Reality
Time-to-market	On time	Late
Competitive	Yes	No

Flash SSD Conventional Wisdom

SSD Perceptions

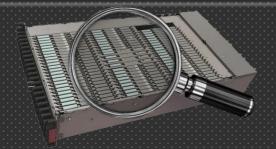
- Very fast
- Very low latency
- Low power/cooling
- Light weight

Flash SSD Conventional Wisdom

SSD Perceptions

- Small capacity/density
- Low reliability
- High cost

SSD Reality


SSD Reliability

Reliability	Perception	Reality
MTBF	Low to medium	DWPD ranges from .5 to 35
SSD Failures	Equivalent to HDDs	Much < HDDs. Whole
33D Tallates	Equivalent to 11003	drives rarely fail
BER	Equivalent to HDDs	Much > HDDs
RAID	Required	Unnecessary. Parity
NAID	Required	reduces SSD wear life
Wide-stripe RAID	Faster rebuilds	Rebuilds not an SSD issue
MCM	Works as well w/SSDs	Consumes > storage
Erasure Codes	Works as well w/SSDs	Adds latency

SSD Density

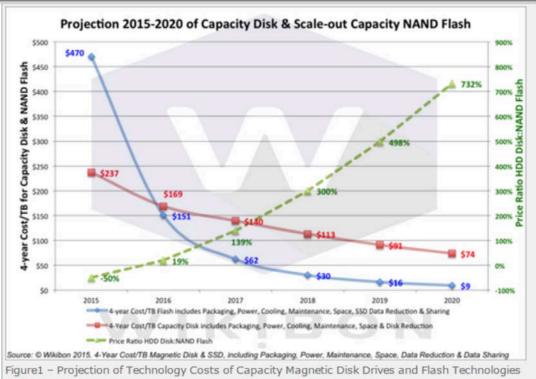
Density	Perception	Reality
Capacity	Lower than HDDs	SFF higher at up to ~ 4TB ¹
Density Footprint	Lower than HDDs	High density racks w/up to 512TB in 3U
Weight	Low	< 10% of equvalent HDD capacities
Data Reduction	Excellent	2 to 3x better than HDDs for primary workloads
Serviceability	Easy	SFF yes, ladder required for HD racks to access SSD

¹NOTE: 8TB even 12TB SFF SSDs are coming by end of 2016

21

SSD Performance

Performance	Perception	Reality
Latency	Exceptional	Orders-of-magnitude >HDD
IOPS	Exceptional	Up to 1000x > equivalent capacity HDDs especially random IOPS
Throughput	Exceptional	TRUE



SSD Cost

Cost: \$/GB	Perception	Reality
Acqusition	Highest	SFF SSDs < SFF HDDs/GB
Power & cooling	Lowest	True for all form factors
\$/IOPS/GB	Lowest	90% < HDDs per GB
Productivity	Best-in-class	Huge Δ w/HDDs
тсо	Highest	< SFF HDDs, > LFF HDDs

Wikibon's Prognostication

Source: © Wikibon 2015. See Figure 2 below for more details and assumptions

24

Wikibon's Prognostication

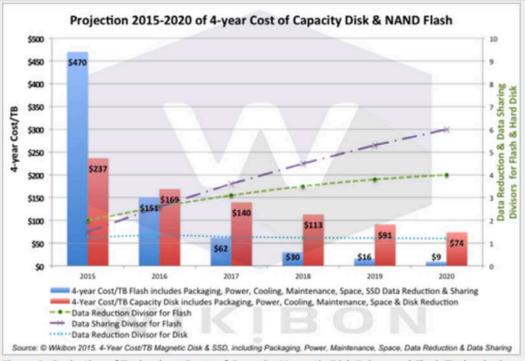


Figure 2: Projection of Technology Costs of Capacity Magnetic Disk Drives and Flash Technologies 2015 - 2020

Sources: © Wikibon 2014. See Figure Footnotes-1 and Table Footnotes-1 in the Footnotes below.

25

SSD Revenue Impact

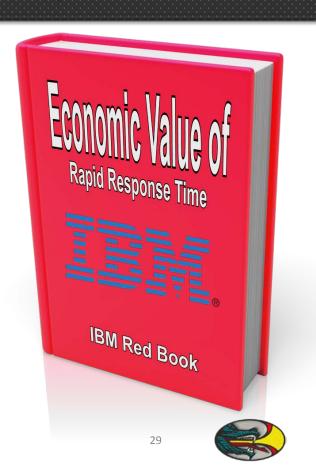
Rev Affect	Perception	Reality
Time-to-market	Faster	Much faster
Competitive	Yes	Yes

Quotes About Time Value

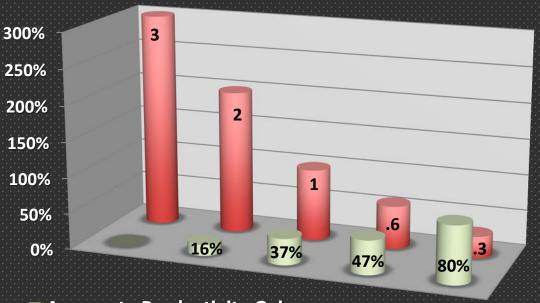
"Time is what we want most, but what we use worst." William Penn

"Time is relative." Albert Einstein

"Time elapses at different speeds depending on what side of the bathroom door you find yourself." Albert Einstein


"Time is money." Benjamin Franklin

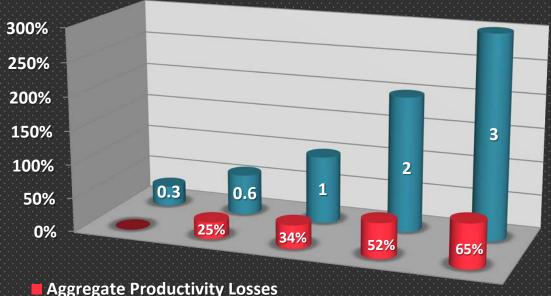
IBM's "The Economic Value of Rapid Response Time"


1st published 1982 repeated since

- Faster app response times = much > productivity
- In addition
 - Application costs plummeted
 - Much > user work satisfaction
 - Much > morale
 - Much > work quality
- Findings surprise
 - as little as .5 seconds = huge impact
- Each study repeat = similar results

Measuring Productivity Gains

Application	Aggregate	Net
Response	Productivity	Productivity
Time (Sec)	Gains	Gains
3	0%	0%
2	16%	16%
1	37%	21%
0.6	47%	11%
0.3	80%	33%



- **■** Aggregate Productivity Gains
- Application Response Time (Sec)

Measuring Productivity Losses

Application Response	Aggregate Productivity	Net Productivity
•	-	_
Time (Sec)	Losses	Losses
0.3	0%	0%
0.6	25%	25%
1	34%	10%
2	52%	17%
3	65%	13%

- **■** Aggregate Productivity Losses
- Application Response Time (Sec)

Converting Into Hard \$\$\$\$

- 1982 IBM used \$35/hr burdened
 - \bullet = \$87.43/hr burdened¹ in 2015
 - We'll use just \$35/hr
- App requirement
 - 1s response time
 - Actual avg response time = 3s
 - 30% productivity loss
- Worker productivity costs
 - \$35/70% \$35 = \$15/hr
 - \$15 * 2080 hrs = \$31,200/yr
 - 100 workers = \$3,120,000/yr

Converting Into Hard \$\$\$\$

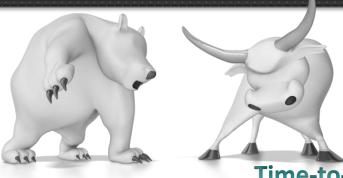
For IT workers

- Burdened costs are higher
- ~ \$48/hr
- \$48/70% \$48 = ~ \$20/hr
- \$20 * 2080 hrs = \$41,600/yr
- 100 workers = \$4,160,000/yr

And It's Not Sunk Cost

Worker Productivity Hard \$

- Work not completed in time
 - Overtime
 - Or more workers
 - Equals > costs
 - 1 women = 1 baby 9 mos
 - 9 women ≠ 1 baby 1 mos
 - Rev permanently lost
 - = < morale > turnover
 - > turnover = > hiring/training \$



IT Worker Hard \$

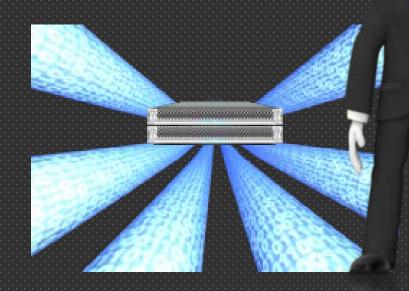
- < performance = > trouble shooting
 - Tune storage performance
 - Fix when drives fail
 - Places heavy burden on IT
 - = < morale > turnover
 - > turnover => hiring/training \$

Converting Productivity Into Revenue Loss/Gain

Simple formula

- T = projected time
 - Late or early to market
- R = projected revenue
 - For that "T"
- G = projected CQGR
 - Compounded quarterly growth %

Time-to-market revenue loss/gain


- Calculate T & R
- Compound CQGR of R
- Loss R never made up
 - Losses run into \$Millions

What About Secondary Applications?

Time Can Be A Major Cost Factor There As Well

- Example: Job can't complete in time window allowed
 - DP (backup) job
 - Hadoop analytics
 - DBMS copy & replicate
 - Archive ingest

How Do HDDs & SSDs Compare

	2.5" SFF SAS/SATA SSD	2.5" SFF 15/10K RPM HDD	3.5" LFF 7.2K RPM HDD
Reliability			
Density	<u> </u>	<u>.</u>	<u>.</u>
Performance		Ŏ	Ō
Cost		•	
Revenue Impact			

Conclusions

What Have We Learned?

- Flash SSDs are very cost effective for:
 - All primary workloads
 - Some secondary workloads
 - Time value taken into account
 - Should be used for <u>ALL</u> workloads

Not Magic, Ideology, or Hype, Just Storage Facts

Q & A

Marc Staimer, President & CDS

Dragon Slayer Consulting

marcstaimer@me.com

503-579-3763

