

Highly Reliable SSDs for Enterprise Storage with Dynamic V_{TH} Optimization and Auto Data Recovery

Atsuro Kobayashi, Tsukasa Tokutomi, Masafumi Doi, Shogo Hachiya, Shuhei Tanakamaru and Ken Takeuchi Chuo University

- Introduction
- Read Level Shifting [1]
- Dynamic V_{TH} Optimization (DVO) [2]
- Auto Data Recovery (ADR) [2]
- Summary

Flash Memory Summit 2015 [1] T. Parnell, IMW, Tutorial, 2014. Santa Clara, CA [2] T. Tokutomi et al., "Enterprise-

Introduction

- Read Level Shifting
- Dynamic V_{TH} Optimization (DVO)
- Auto Data Recovery (ADR)
- Summary

Electron injection # of cells $\int V_{TH}$ is increased due to program and read disturb.

Electron ejection

of cells $\int V_{TH}$ is decreased due to data retention.

Flash Memory Summit 2015 Santa Clara, CA

Retention time : day0(\Diamond), day14(\triangle), day28(\bigcirc), 1Xnm, TLC, @85degC, Write/erase cycle: 200

The amounts of V_{Ref} shift are increased as the retention time increases.
The optimal V_{Ref}'s are different among 'A' to 'G' states. [2]

Flash Memory Summit 2015 Santa Clara, CA

- Introduction
- Read Level Shifting
- Dynamic V_{TH} Optimization (DVO)
- Auto Data Recovery (ADR)
- Summary

• The V_{Ref} is fixedly shifted down when the ECC fails to correct errors.

Flash Memory Summit 2015 [1] T. Parnell, IMW, Tutorial, 2014. Santa Clara, CA

• Measured V_{Ref} shift differs among states, 'A' to 'G' during the data-retention.

- Introduction
- Read Level Shifting
- Dynamic V_{TH} Optimization (DVO)
- Auto Data Recovery (ADR)
- Summary

• Dynamic V_{TH} Optimization is combination of V_{TH} Space Control and Adaptive V_{Ref} Shift.

• AVS selects the optimal V_{Ref} for each state based on the retention time.

Flash Memory Summit 2015 Santa Clara, CA

• The retention time is estimated by the BER and the write/erase cycles. [3]

Flash Memory Summit 2015[3] T. Tokutomi et al., "Advanced Error Prediction LDPC for High-Speed Reliable TLC NAND-based SSDs," IMW, pp. 99-102,
May 2014.Santa Clara, CAMay 2014.

V_{TH} Space Control (VSC) [2]

Memory

Flas

• Errors are decreased by using V_{TH} Space Control.

Method of Controlling Space of $V_{\rm TH}$ Distribution.

• The population of '1' or '0's can be increased by V_{TH} Space Control.

Flash Memory Summit 2015[4] S. Tanakamaru at al., "95%-lower-BER 43%-lower-power intelligent solid-state drive (SSD) with asymmetric coding and
stripe pattern elimination algorithm," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2011, pp. 204-205.

Data-retention errors of 'C' and 'E2' are decreased.

Flash Memory Summit 2015 Santa Clara, CA

 By using AVS and VSC, 80% BER reduction is achieved compared with Read Level Shifting.

- Introduction
- Read Level Shifting
- Dynamic V_{TH} Optimization (DVO)
- Auto Data Recovery (ADR)
- Summary

Flash Memory Summit 2015 Read frequency distribution of proxy server (MSR Cambridge traces, http://iotta.snia.org/traces/388) Santa Clara, CA

 Auto Data Recovery mixes both hot and cold data in the same block to compensate both errors.

- Introduction
- Read Level Shifting
- Dynamic V_{TH} Optimization (DVO)
- Auto Data Recovery (ADR)
- Summary

Summary Table D.R. : Data Retention, R.D. : Read Disturb

Technique	BER Reduction		Pros		Cons	
Read level shifting [1]	Baseline		•	No Overhead	•	Lower Reliability Slower Read
Adaptive V _{Ref} Shift [2]	-61%		•	Higher Reliability Faster Read	•	Table Overhead
Dynamic V _{TH} Optimization [2]	-80%					
Auto Data Recovery [2]	D.R. BER	R.D. BER	•	Higher Reliability		
	-15%	-18%				

Flash Memory Summit 2015 [1] T. Parnell, IMW, Tutorial, 2014.

Santa Clara, CA

Thank you for your attention

This work is partially supported by CREST/JST