

3D XP: What the Hell?!!

Dave Eggleston

Making Sense of 3D XP

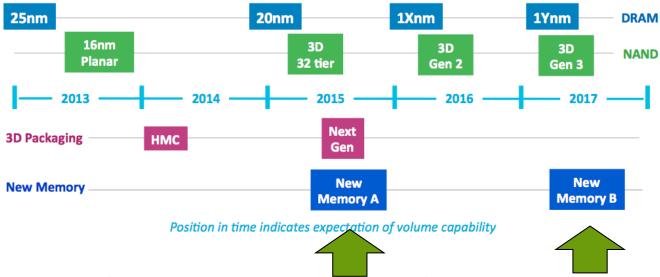
- WHY are you surprised?
- WHAT is it (really)?
- XP Array Limitations: <u>The Litho Problem</u>
- HOW will it be used?
- 3D XP <u>strengths & weaknesses</u>

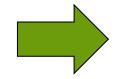
Leading-Edge Technology Status

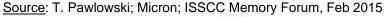
		Source: S. DeBoer; Micron Analyst Day, Feb 2015
DRAM	1Xnm DRAM	 Continued strong progress for 20nm yield at Hiroshima and Inotera facilities 1Xnm development underway in Hiroshima and 1Y/1Znm in Boise
NAND	3D NAND	 16nm TLC NAND now ramping in Singapore Micron 1st generation 3D NAND on track for production in Singapore mid 2015 Second generation under development in Boise
Package Technology	Hybrid Memory Cube	 3D NAND package technology continues to mature, currently manufacturing HMC generation 2 R&D focus on HMC generation 3 enablement for even higher density and bandwidth
New Memory Technology	Cross-point memory	 Multiple paths under active development for storage class memory enablement Targeting 2015 and 2017 for manufacturing introductions of next new memory technologies

Flash Memory Summit 2015 Santa Clara, CA 12 Images are not to scale

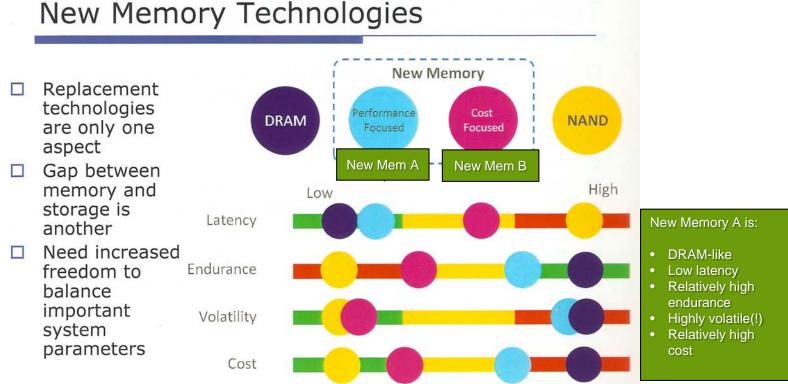
February 11, 2015


©2015 Micron Technology, Inc.




Innovation Roadmap

Source: S. DeBoer; Micron Analyst Day, Feb 2015



- Increased focus on DRAM technology position driving faster introduction cadence
- Enable volume 3D NAND manufacturing capability through 2015
- 3D NAND packaging technology enablement for multiple differentiated opportunities
- Establish disruptive new memory technology and position for ramp in 2016

Switching Mechanisms

Source: M. Jurczak, imec, ISSCC 2015 Memory Forum

What is 3D XP?

Source: Intuitive Cognition Consulting estimates

ST-MRAM

<u>PCMS</u>

ReRAM

3D XP is *NOT* ST-MRAM because:

DRAM

- Can't build ST-MRAM in a XP array (1T-1R)
- Can't achieve 128Gb with ST-MRAM (30F²)
- ST-MRAM more expensive than DRAM

Santa Clara, CA

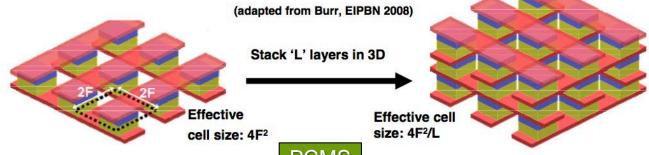
Flash Memory Summit 2015

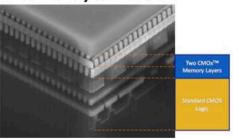
Fast Latency Slow

Long Endurance Short

Big/\$\$\$\$ Cell Size/Cost Small/\$

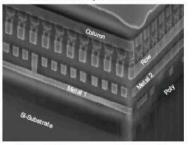
3D XP is *probably NOT* ReRAM because:


- ReRAM Latency is too slow for application
- ReRAM endurance may be too short for the application
- ReRAM is much more likely New Memory B (Cost focused)

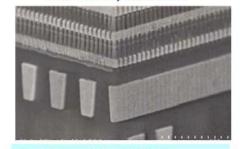


Crosspoint resistive memory

Source: R. Shenoy, IBM, IMW May 2013


Ref: D. Eggleston, Flash Memory Summit 2011

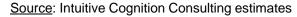
Unity Semiconductor 2 layer Conductive Metal Oxide RRAM

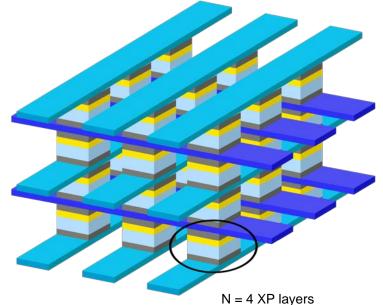

PCMS

Ref: D. Kau, IEDM 2009

Intel/Numonyx 64Mb PCM+OTS selector

Ref: T-Y. Liu, ISSCC 2013


Sandisk/Toshiba 32Gb 2 layer MeOx ReRAM crosspoint in 24nm technology


3D multilayer stacked crosspoint arrays → path to low cost memory

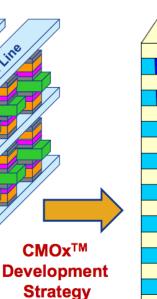
WRONG!

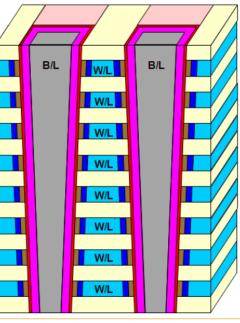
XP Arrays: The Litho Problem

N = 4 XP layers N+1 = 5 masking steps

Cell size of 4F² Effective cell size 1F²

- XP array with shared layers requires multiple masking steps:
 - N+1 masking steps to form WL/BL
 - i.e. 4 XP layers requires a minimum of 5 masking steps
- □ XP cell size 4F² determined by WL/BL lithography:
 - To achieve sub 20nm F requires triple or quad critical layer patterning
 - i.e. 4 XP layers →5 critical masking steps → x4 quad patterning → 20 times through the stepper at sub 20nm!!!
- □XP arrays will <u>never</u> be the lowest cost memory solution!


Flash Memory Summit 2015 Santa Clara, CA



Planar CMOx™

Bit Line

Vertical CMOx™

Reuse of the 3D NAND architecture and processing is the way forward for lowest cost RRAM.

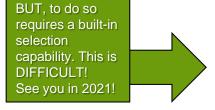
Flash Memory Summit 2015 Santa Clara, CA

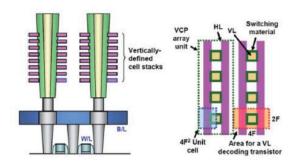
Current Major Costs of Planar CMOx™:

- · Multiple immersion patterning or EUV lithography
- Fine line interconnect very challenging

Vertical CMOx™ (VXPA):

- Extension of vertical NAND
- Low cost lithography
- Fine line interconnect not required
- Earlier, Cost effective option


(NO EUV Required)


Vertical ReRAM (VRRAM)

Source: T. Liu, Sandisk, IMW May 2013

- No. of critical masks is not increasing with added memory layers
 - Multiple layers are formed at the same time
- Challenging to integrate the selector self-rectifying cell needed

Reference:

S. Kim, LETI Memory Workshop 2012

I. G. Baek et al., IEDM 2011

H. S. Yoon et al., VLSI 2009

But WHAT 3D XP is doesn't really matter...

...HOW will 3D XP be used?

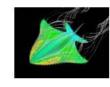
Flash Memory Summit 2015 Santa Clara, CA

How 3D XP will be used

Source: The Platform, "Intel Lets Slip Broadwell, Skylake Xeon Chip Specs", May 2015

Purley: Biggest Platform Advancement Since Nehalem

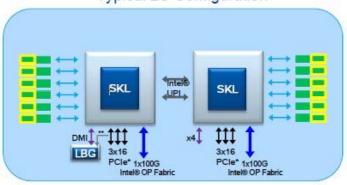
PERFORMANCE FOR RANGE OF WORKLOADS



- · Better performance/Watt
- · 1.5X memory bandwidth
- AVX-512 new instructions
- · Up To 4X capacity & lower cost than DRAM
- 500X faster than NAND
- Persistent data

memory in Purley server platform.

- 1/10G Ethernet
- 100G OmniPath™
- QuickAssist™ encryption and compression offloads
- Skylake + FPGA
- · Cannonlake graphics & media transcode



How 3D XP will be used

2S Purley Platform Configuration Example

Typical 2S Configuration

Platform Ingredient Options

Fabric: Storm Lake Integrated, Storm Lake PCIe* card

Storage: SATA: Downieville, SATA: Youngsville, PCIe*: Coldstream, PCIe* Cliffdale

Software: Analytics, Efficiency, Performance, Secure Access, Tools

Networking: Lewisburg as 4x10GbE Integrated Network Solution with PHY, Fortville 4x10/2x40GbE (Controller), Sageville 2x10GBASE-T (Controller), Springville (1x1GBASE-T), Powerville (4x1GBASE-T)

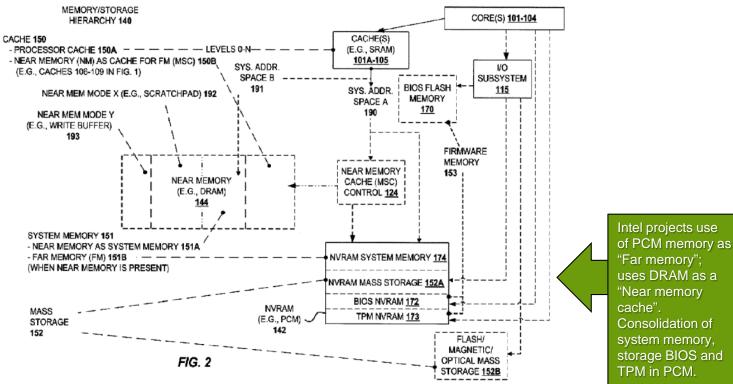
Core Ingredients: Coppervale 10GBASE-T, Jacksonville GbE PHY

Accelerators: Intel® QuickAssist Accelerator Technology with Compression and Encryption, Lewisburg can also be used as PCIe* add-in card in end point mode

Intel® Xeon Phi™ Product Family: Knights Corner/Landing Coprocessors and Processors

FW/Bios: Manageability, Node Manager, Intel® RSTe, ME11, Intel® Trusted Execution Technology and Intel® Platform Protection Technology with Boot Guard

"Apache Pass" DDR4 **DIMMs** supported in Purley.



DDR4 DIMMs DDR4/Apache Pass

Intel Near/Far Memory Hierarchy

uses DRAM as a "Near memory Consolidation of system memory, storage BIOS and TPM in PCM.

Source: Intel US patent, R. Ramanujan et al, "Dynamic partial power down of memory-side cache in a 2-level memory hierarchy" US 20140304475 A1

Intel PCM-Based DIMMs

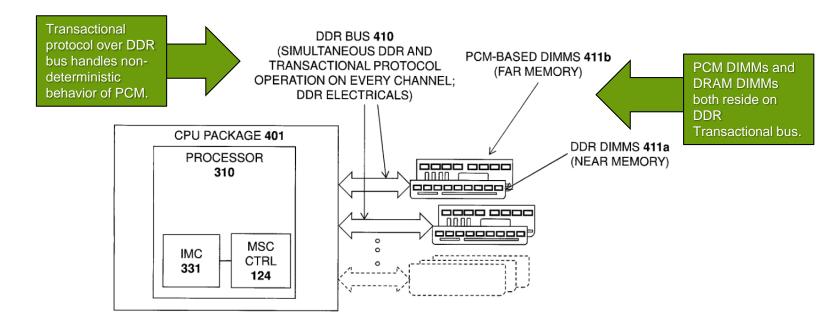


Fig. 4G

Intel PCM-Based DIMM Controller

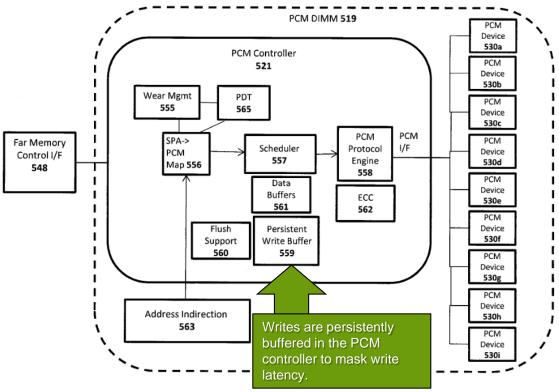


FIG. 5E

<u>Source:</u> Intel US patent, R. Ramanujan et al, "Dynamic partial power down of memory-side cache in a 2-level memory hierarchy" US 20140304475 A1

Speculation on Intel usage of 3D XP

Source: Intuitive Cognition Consulting estimates

Server memory DIMMs:

- In-memory compute, Real time analytics applications
- Coincide with Purley platform launch in 2017
- DDR4 bus with transactional protocol (non-JEDEC)
- Read is PCM native latency (50-200ns)
- Write is buffered in PCM controller (latency hidden)
- 100's of GBs per DIMM (3x-4x DRAM capacity/DIMM)
- Trouble meeting 12W power window (PCM energy)

Strengths/Weaknesses 3D XP

Source: Intuitive Cognition Consulting estimates

Strengths

- Brand new memory type brings new capabilities
- Semi-Persistent memory arrives!
- Server memory target competes with DRAM cost
- Read/write performance near full DRAM speed
- Full system approach

Weaknesses

- 3D XP cost will be high:
 - DRAM \$8/GB, 3D XP \$4/GB, 3D NAND \$0.2/GB
- Sole sourced from Intel/Micron
- Requires major hardware and software changes
- >12W Power requires server thermal re-design
- Non-JEDEC standardized DDR4 transactional interface

Making Sense of 3D XP

- WHY are you surprised?
- WHAT is it (really)?
- XP Array Limitations: <u>The Litho Problem</u>
- HOW will it be used?
- 3D XP strengths & weaknesses

