Confidential

In-Storage Compute: an Ultimate Solution for Accelerating I/Ointensive Applications

13 August 2015 YANG SEOK KI, Director, Memory Solutions Lab, Samsung Electronics Disclaimer: The contents provided in this material are based on concepts and early research results, and are for technical discussions only. This material does not reflect any product-level plan of records.

Contributors

Special thanks to:

Yoonho Chung, Insoon Jo, Minwook Jung, Jungwook Kang, Moonsang Kwon, Truong Nguyen, Dongchul Park, Prem Paulson, Jonghyun Yoon

Outline

- 1. Background
- 2. In-Storage Compute Concept
- 3. ISC Prototype
- 4. Case Studies
- 5. Summary

Data Processing Market

Constant growth of business intelligence & analytics market

Worldwide BI and Analytics Tools Revenue by Segment

Content analytics

Source: IDC, Worldwide Business Analytics Software 2014–2018 Forecast, Jul 2014 [1]

Confidential

SAMSUNG

Subtotal

BI and analytics tools are I/O hungry!!

• They usually access terabytes (sometimes even petabytes) of data on slow storage device

Event	Waits	Time(s)	Avg. wait (ms)	% DB time	Wait class
Direct path read	4,604,339	567.141	123	63.67	User I/O
Direct path read temp	1,955,162	147,298	75	16.54	User I/O
DB CPU		38,874		4.36	
DB file sequential read	117,944	16,399	139	1.84	User I/O
Direct path write temp	597,138	13,507	23	1.52	User I/O

OLAP Bottleneck!!

CPU-centric Computing Model (Von Neumanni)ential

Source: HDFS Architecture Guide [3]

Reducing data movement can help improve both energy and performance

Source: USENIX HotPower, 2012 [4]

The energy consumed by data movement is starting to exceed the energy consumed by computation

Source: High Performance parallel IO, 2014 [5]

Near Data Processing Technology

Intelligent SSD [NxGnData]

SPU (Storage Processing Unit) [Seagate]

SAMSUNG

The ultimate of close-to-data compute for high performance & low power is *"In-Storage Compute (ISC)"*

What is ISC (In-Storage Compute)?

Why? IO Traffic

■ ISC is an ultimate approach to IO reduction/avoidance

File Edit View Hardw	are A	Applic	ation Too	ls Help				
Connected to My Domain (1,1,1)	54	Jogin					Stopped, no	trace available for
Port Name	B/W	F/P	Data Rate	Strip Chart	Buffer Filled %	State	Link Speed	Signal
My Domain (1, 1, 1)								
- 🌍 XGIG1K21005580								
- SAS Link - 1	0	0	8.75 MB/s			Stopped	6.0000 Gbps (Auto (SAS	Passthrough
SAS Port(1,1,1)	0		0.00 MB/s		0 %	Stopped	6.0000 Gbps (Auto (SAS	Passthrough
SAS Port(1,1,2)	0		0.00 MB/s			Cist oped	6 DO 0 Gbps (Auto (SAS	Passthrough
SAS Port(1,1,3)	0		0.00 MB/s			Disput	6 DOF D Gbps (Auto (SAS	Passthrough
SAS Port(1,1,4)	0		0.00 MB/s		0 %	Stopped	6.0000 Gbps (Auto (SAS	Passthrough
SAS Port(1,1,5)	0	0	0.01 MB/s		0 %	Stopped	6.0000 Gbps (Auto (SAS	Passthrough
SAS Port(1,1,6)	0	0	8.74 MB/s			Stopped	6.0002 Shpe (Auto (SAS	Passthrough
SAS Port(1,1,7)	0		0.00 MB/s			MAIC	000. hps. up (545	Passthrough
SAS Port(1,1,8)	0		0.00 MB/s				0000 composition SAS	Passthrough

Samsung SAS-based ISC with a Hadoop application

SAMSUNG

Why? Coprocessor

SSD is a complete computer with high performance low power processor

Why? Bandwidth Gap

Superfluous internal bandwidth

• To hide processing overhead of host interface and FTL

SAMSUNG

Storage resource is underutilized

How? ISC Application Development Processon fidential

ISC Dataflow Programming Model

Simple Key Value Store in ISC Programmingonfidential

SAMSUNG

ISC Runtime Framework

Samsung ISC SSD Prototype

Commodity SSD

- Samsung PM1725 NVMe with the ISC feature
- PCIe 3.0 x4
- 800 GB

Software

- C++11
- C++ STL
- g++
- Software emulator

Case Study 1: Data Analytics with MySQL Confidential

MySQL determines data pages to fetch according to relevance hints from SSD

- MySQL gets relevance hints for pages in a given range all at once
- Filter out access to pages with irrelevant data

SAMSUNG

Data Analytics Query

Elapsed time of TPC-H query 2

• An analytic query to find a minimum cost supplier

SELECT s_acctbal, s_name, n_name, p_partkey, p_mfgr, s_address, s_phone, s_comment_______The most efficient plan FROM part, supplier, partsupp, nation, region is to put part table first WHERE p_partkey = ps_partkey AND s_suppkey = ps_suppkey AND in the join order and p_size = 15 AND p_type LIKE '%BRASS' AND filter out its irrelevant s_nationkey = n_nationkey AND n_regionkey = r_regionkey AND r_name = 'EURC pages! AND ps_supplycost = (SELECT MIN(ps supplycost) FROM partsupp, supplier, nation, region WHERE p_partkey = ps_partkey AND s_suppkey = ps_suppkey AND s_nationkey = n_nationkey AND n_regionkey = r_regionkey AND r_name = 'EUROPE') ORDER BY's acctbal desc, n name, s name, p partkey LIMIT 100;

ISC reduces the query time to less than 1/40

# of pages read w/ MySQL (baseline)	Table name	# of pages read w/ ISC
1,325,978	Total	22,317
325,386	Part	7,525
15,229	Supplier	4,582
985,354	Partsupp	10,201
5	Nation	5
4	Region	4

Execution Time of TPC-H Query 2

SAMSUNG

3.6X TPC-H Query Processing Speed Up

A representative TPC-H benchmark subset is expected to reveal over 3.6x performance gains

Confidential

Host server	Dell PowerEdge R720 - Intel(R) Xeon(R) CPU E5-2640 0 @ 2.50GHz x2 - 3G of DRAM - OS device: Samsung MZ-6ER100T SAS 100GB SSD - Data device: PM1725 480GB NVMe SSD (SR=3GB/s)
OS	Ubuntu 15.04 (3.19.0 kernel)
Software	Mariadb-5.5.42 & TPC-H 2.17.0
TPC-H dataset	20G of dataset (with scale factor of 10)

Speed-up by ISC

SAMSUNG

24/30

Case Study 2: Storage Compaction

LevelDB

- One of popular embedded databases
- Open-source, embedded key/value store by Google
- Base database system for other open source projects
 - RocksDB (LevelDB+HBase), HyperLevelDB
 - Riak, Ceph storage backend

- Log: Max size of 4MB then flushed into a set of Level 0 SST files
- **Level 0:** Max of 4 SST files then one file compacted into Level 1
- **Level 1:** Max total size of 10MB then one file compacted into Level 2
- Level 2: Max total size of 10 x Level 1 then one file compacted into Level 3
- Level 3+: Max total size of 10 x previous level then one file compacted into next level

New LevelDB with Compaction Powered by ISC Confidential

Up to 10X Throughput Improvement

SAMSUNG

27/30

Computing paradigm shift from CPU-centric to data-centric for I/O intensive applications

Confidential

- Samsung ISC realizes heterogeneous computing framework across general purpose CPU and SSD.
- IO intensive applications can benefit from low power high performance of embedded processors and high internal bandwidth of SSDs.
- Samsung ISC prototype
 - ISC-aware MySQL achieves performance improvement up to 80x or 3.6x on average with TPC-H
 - ISC-aware LeveIDB achieves up to 10x throughput improvement with dbbench (default benchmark)

Reference

- [1] IDC, "Worldwide Business Analytics Software 2014–2018 Forecast and 2013 Vendor Shares," Jul 2014.
- [2] HUAWEI, "Accelerate Oracle Performance by Using ASM Preferred Read Failure Group with Dorado," Sep 2012.
- [3] HDFS Architecture Guide, <u>https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html</u>
- [4] Devesh Tiwari et al., "Reducing Data Movement Costs using Energy-Efficient, Active Computation on SSD," HotPower'12, 2012.
- [5] Prabhat and Quincey Koziol, "High Performance Parallel I/O," CRC Press book, Oct 2014.

Meet our engineers at booth 307 4-7PM (Tue), 12-7PM (Wed), 10:30AM-2PM (Thu)

Thank You!

yangseok.ki@samsung.com