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Software Defined Flash Storage System
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Memblaze provides software defined flash system ▬ memOS



Design Challenges
• Low latency challenges 

• Write request with low latency
• Interaction between read & write requests
• Balance between bandwidth and latency

• Consistent performance challenges
• Linux OS makes performance inconsistent
• Multi-cores / NUMA affect performance consistency
• How to keep low latency within high IOPS
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Where’s the Bottleneck of Flash System?
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Traditional Write Path Analysis
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Traditional Read Path Analysis
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New Approach: RISL Software Architecture
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• SSD characteristics
– Random write generates lots of mapping information and make GC busy

• Sequential write can make FTL works in best condition

– High random read performance
– Write / erase operation affects read performance

• Memblaze answer: RISL (patent filed by Memblaze)
–Random Input Stream Layout

• Whatever input IO patterns, data layout on SSD is always sequential
– RISL Includes:

• Non-volatile write cache: converts any write pattern into sequential
• Separate read and write requests into different container (storage object)
• Pipeline and run-to-complete IO model is used to handle write request
• Run-to-complete IO model is used to handle read request



RISL Architecture
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Introduce NVDIMM to Reduce Write Latency
• NVDIMM vs. SSD

• NVDIMM has higher IOPS and lower latency
• 10 ~ 100ns latency

• SSD has higher capacity
• 10 ~ 100us latency

• Benefits from NVDIMM
• Avoid updating metadata on SSD frequently
• Used as write cache to reduce latency for write request
• Convert all kinds of requests’ pattern into sequential

• Convert IOPS issue into bandwidth
• Enable to adopt pipeline IO handling model to deal with 

write request
Flash Memory Summit 2015
Santa Clara, CA 9



IO Handling Model in RISL
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• Design conflicts: bandwidth & latency
• IO handling model

• Pipeline
• Aggregate bandwidth but introduce latency

• Run-to-complete
• Reduce latency but affect bandwidth

• Combine pipeline and run-to-complete 
• Separate write and read handling processes
• Write uses both run-to-complete and pipeline model

• Adopt NVDIMM to reduce latency

• Read uses run-to-complete model
• Expand CPU to increase bandwidth



Write Data Path with RISL
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Read Data Patch with RISL
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Write Latency Evaluation with RISL

• Write latency is about 160us (8 NVMe SSD, RAID6, 4GB NVDIMM)
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Read Latency Evaluation with RISL

• With 820,000 IOPS, read latency is about 230us (8 NVMe SSDs)
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How to Make Consistent Performance?

• Mixed type of IO requests
• Separate read & write handling threads
• Write request is dispatched into active containers and 

read request is distributed on sealed containers

• Linux OS affects performance consistency
• Linux task scheduler

• Use cgroup to separate CPU resources

• Interrupt
• Interrupt affinity and balance on multi-cores platform
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Isolate CPU to make performance consistent 

• Cgroup makes performance more consistent
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Sustained Latency Evaluation
• Cumulative distribution function (8 NVMe SSDs, RAID6) 
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Conclusion
• RISL (Random Input Stream Layout) architecture is used 

to ensure low latency and consistent performance
• Uses NVDIMM as write cache
• Separates read & write requests
• Combines pipeline and run-to-complete IO handling model
• Converts all kinds of IO pattern into sequential stream on SSD
• Optimizes data layout on SSD

• Optimize Linux to achieve consistent performance
• Cgroup / Interrupt affinity / request affinity
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Thank You!
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