
Methods to achieve low latency and 
consistent performance

Alan Wu, Architect, Memblaze
zhongjie.wu@memblaze.com

2015/8/13
Flash Memory Summit 2015
Santa Clara, CA 1

mailto:zhongjie.wu@memblaze.com


Software Defined Flash Storage System

Flash Memory Summit 2015
Santa Clara, CA 2

Memblaze provides software defined flash system ▬ memOS



Design Challenges
• Low latency challenges 

• Write request with low latency
• Interaction between read & write requests
• Balance between bandwidth and latency

• Consistent performance challenges
• Linux OS makes performance inconsistent
• Multi-cores / NUMA affect performance consistency
• How to keep low latency within high IOPS

Flash Memory Summit 2015
Santa Clara, CA 3



Where’s the Bottleneck of Flash System?

Flash Memory Summit 2015
Santa Clara, CA 4



Traditional Write Path Analysis

Flash Memory Summit 2015
Santa Clara, CA

5

Write cache

IO scheduler

HDD

CPU CPU CPU CPU…

Write
thread

Write
thread

Write
thread

Write
thread

Write
thread

…

Task scheduler Introduce IO latency and jitter

Introduce IO latency and jitter

GC/Random write affect 
performance

Write back
Cache can reduce IO latency

Linux OS

1

2

3

4

NIC/IB/FC Initiator and exportation 
interface has performance 
bottleneck



Traditional Read Path Analysis

Flash Memory Summit 2015
Santa Clara, CA 6

IO scheduler

HDD

CPU CPU CPU CPU…

Read
thread

Read
thread

Read
thread

Read
thread

Read
thread…

Task scheduler

interrupts

Introduce IO 
latency and jitter

Introduce IO 
latency and jitter

GC/write affect read 
performance

Interrupts affect 
performance

Linux OS

1

2

3

4

NIC/FC/IB
Interface has performance 
bottleneck



New Approach: RISL Software Architecture

Flash Memory Summit 2015
Santa Clara, CA 7

• SSD characteristics
– Random write generates lots of mapping information and make GC busy

• Sequential write can make FTL works in best condition

– High random read performance
– Write / erase operation affects read performance

• Memblaze answer: RISL (patent filed by Memblaze)
–Random Input Stream Layout

• Whatever input IO patterns, data layout on SSD is always sequential
– RISL Includes:

• Non-volatile write cache: converts any write pattern into sequential
• Separate read and write requests into different container (storage object)
• Pipeline and run-to-complete IO model is used to handle write request
• Run-to-complete IO model is used to handle read request



RISL Architecture

Flash Memory Summit 2015
Santa Clara, CA 8

Container Container ContainerContainer

Write Stream

Read requests
Fingerprint 

cache

Mapping 
cache

memFS

memRAID
Sealed containers Active container

Write cache 
(NVDIMM)

memOS

Pipeline IO model

Run-to-complete IO model



Introduce NVDIMM to Reduce Write Latency
• NVDIMM vs. SSD

• NVDIMM has higher IOPS and lower latency
• 10 ~ 100ns latency

• SSD has higher capacity
• 10 ~ 100us latency

• Benefits from NVDIMM
• Avoid updating metadata on SSD frequently
• Used as write cache to reduce latency for write request
• Convert all kinds of requests’ pattern into sequential

• Convert IOPS issue into bandwidth
• Enable to adopt pipeline IO handling model to deal with 

write request
Flash Memory Summit 2015
Santa Clara, CA 9



IO Handling Model in RISL

Flash Memory Summit 2015
Santa Clara, CA 10

• Design conflicts: bandwidth & latency
• IO handling model

• Pipeline
• Aggregate bandwidth but introduce latency

• Run-to-complete
• Reduce latency but affect bandwidth

• Combine pipeline and run-to-complete 
• Separate write and read handling processes
• Write uses both run-to-complete and pipeline model

• Adopt NVDIMM to reduce latency

• Read uses run-to-complete model
• Expand CPU to increase bandwidth



Write Data Path with RISL

Flash Memory Summit 2015
Santa Clara, CA 11SSD

CPU CPU CPU…

Container write
handler

…

Task scheduler

memOS

Pipeline IO model

Write
handler

CPU

Write
handler

CPU

Write
handler

CPU

Container write
handler

Data dedupe
handler write callback

Run-to-complete 
IO model

Interrupt / 
callback

Random requests

Stream data



Read Data Patch with RISL

Flash Memory Summit 2015
Santa Clara, CA 12

SSD

CPU CPU CPU CPU

…

Read
handler

Read
handler

Read
handler

Read
callback

memOS

1
2

Run-to-complete IO model

Interrupts / 
callback

Read request



Write Latency Evaluation with RISL

• Write latency is about 160us (8 NVMe SSD, RAID6, 4GB NVDIMM)

Flash Memory Summit 2015
Santa Clara, CA 13

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 50 100 150 200 250 300 350

IO
PS

Random Write IOPS (4KB, queue_depth=32)

0

50

100

150

200

250

0 50 100 150 200 250 300 350

La
te

nc
y 

(u
s)

Random Write Latency (4KB, queue_depth=32)



Read Latency Evaluation with RISL

• With 820,000 IOPS, read latency is about 230us (8 NVMe SSDs)

Flash Memory Summit 2015
Santa Clara, CA 14

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 100 200 300 400 500 600 700

IO
PS

Random Read IOPS (4KB, queue_depth:32)

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700

La
te

nc
y 

(u
s)

Random Read Latency (4KB, queue_depth:32)



How to Make Consistent Performance?

• Mixed type of IO requests
• Separate read & write handling threads
• Write request is dispatched into active containers and 

read request is distributed on sealed containers

• Linux OS affects performance consistency
• Linux task scheduler

• Use cgroup to separate CPU resources

• Interrupt
• Interrupt affinity and balance on multi-cores platform

Flash Memory Summit 2015
Santa Clara, CA 15



Isolate CPU to make performance consistent 

• Cgroup makes performance more consistent

Flash Memory Summit 2015
Santa Clara, CA 16

0

200

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500 600

La
te

nc
y 

(u
s)

Time

Latency comparision for mixed read/write

no_cgroup cgroup



Sustained Latency Evaluation
• Cumulative distribution function (8 NVMe SSDs, RAID6) 

Flash Memory Summit 2015
Santa Clara, CA 17

0

20

40

60

80

100

120

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

PR
O

BA
BI

LI
TY

LATENCY (US)

RANDOM READ & WRITE CDF
6K(IOPS)_Q1_4KB 820K(IOPS)_Q32_4KB 60K(IOPS)_Q1_4KB 770K(IOPS)_Q32_4KB



Conclusion
• RISL (Random Input Stream Layout) architecture is used 

to ensure low latency and consistent performance
• Uses NVDIMM as write cache
• Separates read & write requests
• Combines pipeline and run-to-complete IO handling model
• Converts all kinds of IO pattern into sequential stream on SSD
• Optimizes data layout on SSD

• Optimize Linux to achieve consistent performance
• Cgroup / Interrupt affinity / request affinity

Flash Memory Summit 2015
Santa Clara, CA 18



Thank You!

Flash Memory Summit 2015
Santa Clara, CA 19

http://www.memblaze.com

http://www.memblaze.com/

	Methods to achieve low latency and consistent performance
	Software Defined Flash Storage System
	Design Challenges
	Where’s the Bottleneck of Flash System?
	Traditional Write Path Analysis
	Traditional Read Path Analysis
	New Approach: RISL Software Architecture
	RISL Architecture
	Introduce NVDIMM to Reduce Write Latency
	IO Handling Model in RISL
	Write Data Path with RISL
	Read Data Patch with RISL
	Write Latency Evaluation with RISL
	Read Latency Evaluation with RISL
	How to Make Consistent Performance?
	Isolate CPU to make performance consistent 
	Sustained Latency Evaluation
	Conclusion
	Thank You!

