\ 4

FIa&JIMenzo bx
 SunnT ry MEMS3LAZE

Methods to achieve low latency and
consistent performance

Alan Wu, Architect, Memblaze
zhongjie.wu@memblaze.com

2015/8/13

Flash Memory Summit 2015
Santa Clara, CA

mailto:zhongjie.wu@memblaze.com

na‘s:,nsMe@ry Software Defined Flash Storage System

 SuUMMIT |

Software defined flash storage system

NVMe SSD SATA SSD

ot

\ Commodity server / platform y

Memblaze provides software defined flash system — memQOS

Flash Memory Summit 2015 /l
Santa Clara, CA VIEMSLAZE 5

FashMemory Design Challenges

e Low latency challenges
* \Write request with low latency
* Interaction between read & write requests
e Balance between bandwidth and latency

e Consistent performance challenges
e Linux OS makes performance inconsistent
 Multi-cores / NUMA affect performance consistency
 How to keep low latency within high IOPS

Flash Memory Summit 2015 /‘
Santa Clara, CA IEM3LAZE

Fla%jiMéhiow Where’s the Bottleneck of Flash System?

 SuUMMIT |

~

\Who is bottleneck? /

Task Scheduler O scheduler FC port

Memory copy Disk interface

Context switch FTL GC

\EHI/ %

Flash Memory Summit 2015 J >
Santa Clara, CA MEMS3LAZE 4

4

,.as,,Memow Traditional Write Path Analysis

 SUMMIT
NIC/IB/FC
Write Write Write Write Write
thread thread thread thread thread

o Task scheduler

/Write back

(2 Write cache

|O scheduler
Linux OS e
HDD o

Flash Memory Summit 2015
Santa Clara, CA

/h BLAZE

Initiator and exportation
interface has performance
bottleneck

Introduce IO latency and jitter

Cache can reduce 10 latency

Introduce 1O latency and jitter

GC/Random write affect
performance

FlasllMemory Traditional Read Path Analysis

 SuUMMIT |
Interface has performance
NIC/FC/IB bottleneck
Read Read Read Read Read
thread thread thread thread thread
Introduce 10

latency and jitter

Introduce 10
latency and jitter

o Task scheduler

12

IO scheduler]

Linux OS

N

interrupts

Flash Memory Summit 2015
Santa Clara, CA

~a

HDD

/l BLAZE

Interrupts affect
performance

GCl/write affect read

performance
6

g,

r

FlashMemory New Approach: RISL Software Architecture

 SUMMIT
e SSD characteristics

— Random write generates lots of mapping information and make GC busy
o Sequential write can make FTL works in best condition

— High random read performance
— Write / erase operation affects read performance

« Memblaze answer: RISL (patent filed by Memblaze)

—Random Input Stream Layout
 Whatever input IO patterns, data layout on SSD is always sequential

— RISL Includes:

* Non-volatile write cache: converts any write pattern into sequential
» Separate read and write requests into different container (storage object)
 Pipeline and run-to-complete IO model is used to handle write request

Flash Memory Shnfﬁﬂribtg-coyglkete IO model is used to handle read request

Santa Clara, CA MEMS3LAZE

rashMemory RISL Architecture

 SuMMIT |

memQOS

/ e MEMFS \
Write cache
Pipeline IO model
Mapping . :
ache Fingerprint
\ Read requests ache /
Run-to-complete I©’ model Write Stream
/ \
Sealed containers Active container

\ memRAID)

Flash Memory SUI%FH'R—Z'%
Santa Clara, CA VIEMSLAZE

FlashMemory |ntroduce NVDIMM to Reduce Write Latency

 SuUMMIT |

e NVDIMM vs. SSD

« NVDIMM has higher IOPS and lower latency
« 10 ~ 100ns latency

e SSD has higher capacity
10 ~ 100us latency

e Benefits from NVDIMM

e Avoid updating metadata on SSD frequently
e Used as write cache to reduce latency for write request

« Convert all kinds of requests’ pattern into sequential
o Convert IOPS issue into bandwidth

 Enable to adopt pipeline 10 handling model to deal with
write request

Flash Memory Summit 2015 /l
Santa Clara, CA MEMS3LAZE 9

FashMemory |0 Handling Model in RISL

 SUMMIT |
 Design conflicts: bandwidth & latency

10 handling model
* Pipeline
« Aggregate bandwidth but introduce latency
 Run-to-complete
* Reduce latency but affect bandwidth

« Combine pipeline and run-to-complete
o Separate write and read handling processes

* Write uses both run-to-complete and pipeline model
« Adopt NVDIMM to reduce latency

 Read uses run-to-complete model
Flash Memory o EX¥pand CI;E to increase bandwidth

Santa Clara, CA MEMS3LAZE

10

4

rlasJ-Memory Write Data Path with RISL

Flash Memory Summit 2015 /I
MENSBLAZE

Santa Clara, CA

Run-to-complete
IO model

Random requests -

< —

~

N\ (G

N (¢

Write
handler

Write
handler

~N

Write
handler

I

handler

Container write

handler

Container write

Data dedupe
handler

write callback

Pipeline IO model Task scheduler
memOS @ @

Interrupt /
callback

Stream data —__

/

SSD

11

\ 4

Fla%jiMéﬁiow Read Data Patch with RISL

Run-to-complete 1O model

-

~N

-

N\) 4)

Read
handler

Read Read Read
handler handler callback

&)

memQOS

Read request

Flash Memory Summit 2015

Interrupts /
callback

SSD]

Santa Clara, CA MEMS3LAZE

12

M

rlasJ-MiénEory Write Latency Evaluation with RISL

 Write latency Is about 160us (8 NVMe SSD, RAID6, 4GB NVDIMM)

Random Write IOPS (4KB, queue_depth=32) Random Write Latency (4KB, queue_depth=32)
900000 250
o @ °
700000 @ o oo%e ¢ ® 9 os' P\ 200 -
600000 e e ? ° oo ® o 3 % l‘l ;
- 150
500000 E
g >
o g
400000 2
3 100
300000
200000
50
100000
0 0
0 20 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Flash Memory Summit 2015 »
Santa Clara, CA MEMS3LAZE 13

Y\A/{

RashMemory Read Latency Evaluation with RISL

e With 820,000 IOPS, read latency is about 230us (8 NVMe SSDs)

Random Read IOPS (4KB, queue_depth:32) Random Read Latency (4KB, queue_depth:32)

1000000 400

900000 . 0 | ® oo
800000 “ * % 3. ° 0 oo . .: t
o o
° °

700000 f
600000 | g o d .: ° t h 7 ‘ “
o . ° e i Ba® NN,
& 500000 32
g
400000 S
300000
100
200000
100000 50
0 0
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Flash Memory Summit 2015 J >
Santa Clara, CA MEMS3LAZE

FlashMemory How to Make Consistent Performance?

 SuUMMIT |

 Mixed type of IO requests

e Separate read & write handling threads

* Write request is dispatched into active containers and
read request Is distributed on sealed containers

e Linux OS affects performance consistency

e Linux task scheduler
e Use cgroup to separate CPU resources

e Interrupt

 Interrupt affinity and balance on multi-cores platform

Flash Memory Summit 2015 /l
Santa Clara, CA MEMS3LAZE

15

W\

FlagliMiéliory Isolate CPU to make performance consistent

 Cgroup makes performance more consistent

Latency comparision for mixed read/write

1800

1600 - °
1400 PY
o °
1200 o °
= o
3 1000 o o . °
& ° °
§ 800 o '.;~Qg ° .. ’g ...
© [) @
- 'Y @ [o9 ’. o
w0 . 3V VAN B 200 Wit TG
* - K My
Oy m? < [o
100 @® ‘o @ o ° L) o
200
0
0 100 200 300 400 500 600
Time
Flash Memory Summit 2015
m’SLAZE @®no_cgroup @ cgroup 16

Santa Clara, CA

\ 4

FashMemory Systained Latency Evaluation

e Cumulative distribution function (8 NVMe SSDs, RAIDO)

120

100

80

60

PROBABILITY

40
20

0
0 200

Flash Memory Summit 2015
Santa Clara, CA

RANDOM READ & WRITE CDF

—o—6K(IOPS)_Q1_4KB —m—820K(IOPS)_Q32_4KB —A—60K(IOPS)_Ql_4KB =—3¢—770K(IOPS)_Q32_4KB

400

¥V MEMS3LAZE

600 800 1000 1200 1400 1600 1800
LATENCY (US)

2000

17

FlashMemory Conclusion

 RISL (Random Input Stream Layout) architecture is used

to ensure low latency and consistent performance
 Uses NVDIMM as write cache
« Separates read & write requests
« Combines pipeline and run-to-complete 10 handling model
« Converts all kinds of 10 pattern into sequential stream on SSD
* Optimizes data layout on SSD

e Optimize Linux to achieve consistent performance
o Cgroup / Interrupt affinity / request affinity

Flash Memory Summit 2015 /‘
IEVMSBLAZE

Santa Clara, CA 18

FlashMemory

Flash Memory Summit 2015
Santa Clara, CA

Thank You!

http://www.memblaze.com

V MEMS3LAZE

19

http://www.memblaze.com/

	Methods to achieve low latency and consistent performance
	Software Defined Flash Storage System
	Design Challenges
	Where’s the Bottleneck of Flash System?
	Traditional Write Path Analysis
	Traditional Read Path Analysis
	New Approach: RISL Software Architecture
	RISL Architecture
	Introduce NVDIMM to Reduce Write Latency
	IO Handling Model in RISL
	Write Data Path with RISL
	Read Data Patch with RISL
	Write Latency Evaluation with RISL
	Read Latency Evaluation with RISL
	How to Make Consistent Performance?
	Isolate CPU to make performance consistent
	Sustained Latency Evaluation
	Conclusion
	Thank You!

