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Software defined flash storage system

NVMe SSD SATA SSD

ot

\ Commodity server / platform y

Memblaze provides software defined flash system — memQOS
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FashMemory Design Challenges

e Low latency challenges
* \Write request with low latency
* Interaction between read & write requests
e Balance between bandwidth and latency

e Consistent performance challenges
e Linux OS makes performance inconsistent
 Multi-cores / NUMA affect performance consistency
 How to keep low latency within high IOPS
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Fla%jiMéhiow Where’s the Bottleneck of Flash System?
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\Who is bottleneck? /

Task Scheduler O scheduler FC port

Memory copy Disk interface

Context switch FTL GC

\EHI/ %

Flash Memory Summit 2015 J >
Santa Clara, CA MEMS3LAZE 4



4

,.as,,Memow Traditional Write Path Analysis

 SUMMIT
NIC/IB/FC
Write Write Write Write Write
thread thread thread thread thread

o Task scheduler

/Write back

(2 Write cache

|O scheduler
Linux OS e
HDD o
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Initiator and exportation
interface has performance
bottleneck

Introduce IO latency and jitter

Cache can reduce 10 latency

Introduce 1O latency and jitter

GC/Random write affect
performance



FlasllMemory Traditional Read Path Analysis
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Interface has performance
NIC/FC/IB bottleneck
Read Read Read Read Read
thread thread thread thread thread
Introduce 10

latency and jitter

Introduce 10
latency and jitter

o Task scheduler

12

IO scheduler ]

Linux OS

N

interrupts
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Interrupts affect
performance

GCl/write affect read

performance
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FlashMemory New Approach: RISL Software Architecture

 SUMMIT
e SSD characteristics

— Random write generates lots of mapping information and make GC busy
o Sequential write can make FTL works in best condition

— High random read performance
— Write / erase operation affects read performance

« Memblaze answer: RISL (patent filed by Memblaze)

—Random Input Stream Layout
 Whatever input IO patterns, data layout on SSD is always sequential

— RISL Includes:

* Non-volatile write cache: converts any write pattern into sequential
» Separate read and write requests into different container (storage object)
 Pipeline and run-to-complete IO model is used to handle write request

Flash Memory Shnfﬁﬂribtg-coyglkete IO model is used to handle read request
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rashMemory RISL Architecture
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memQOS

/ e MEMFS \
Write cache
Pipeline IO model
Mapping . :
ache Fingerprint
\ Read requests ache /
Run-to-complete I©’ model Write Stream
/ \
Sealed containers Active container

\ memRAID )

Flash Memory SUI%FH'R—Z'%
Santa Clara, CA VIEMSLAZE



FlashMemory |ntroduce NVDIMM to Reduce Write Latency
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e NVDIMM vs. SSD

« NVDIMM has higher IOPS and lower latency
« 10 ~ 100ns latency

e SSD has higher capacity
10 ~ 100us latency

e Benefits from NVDIMM

e Avoid updating metadata on SSD frequently
e Used as write cache to reduce latency for write request

« Convert all kinds of requests’ pattern into sequential
o Convert IOPS issue into bandwidth

 Enable to adopt pipeline 10 handling model to deal with
write request
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FashMemory |0 Handling Model in RISL
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 Design conflicts: bandwidth & latency

10 handling model
* Pipeline
« Aggregate bandwidth but introduce latency
 Run-to-complete
* Reduce latency but affect bandwidth

« Combine pipeline and run-to-complete
o Separate write and read handling processes

* Write uses both run-to-complete and pipeline model
« Adopt NVDIMM to reduce latency

 Read uses run-to-complete model
Flash Memory o EX¥pand CI;E to increase bandwidth
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rlasJ-Memory Write Data Path with RISL

Flash Memory Summit 2015 /I
MENSBLAZE

Santa Clara, CA

Run-to-complete
IO model

Random requests -

< —

~

N\ (G

N (¢

Write
handler

Write
handler

~N

Write
handler

I

handler

Container write

handler

Container write

Data dedupe
handler

write callback

Pipeline IO model Task scheduler
memOS @ @

Interrupt /
callback

Stream data —__

/

SSD

11



\ 4

Fla%jiMéﬁiow Read Data Patch with RISL

Run-to-complete 1O model

-
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-
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Read
handler

Read Read Read
handler handler callback
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memQOS

Read request
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rlasJ-MiénEory Write Latency Evaluation with RISL

 Write latency Is about 160us (8 NVMe SSD, RAID6, 4GB NVDIMM)

Random Write IOPS (4KB, queue_depth=32) Random Write Latency (4KB, queue_depth=32)
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RashMemory Read Latency Evaluation with RISL

e With 820,000 IOPS, read latency is about 230us (8 NVMe SSDs)

Random Read IOPS (4KB, queue_depth:32) Random Read Latency (4KB, queue_depth:32)
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FlashMemory How to Make Consistent Performance?
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 Mixed type of IO requests

e Separate read & write handling threads

* Write request is dispatched into active containers and
read request Is distributed on sealed containers

e Linux OS affects performance consistency

e Linux task scheduler
e Use cgroup to separate CPU resources

e Interrupt

 Interrupt affinity and balance on multi-cores platform
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FlagliMiéliory Isolate CPU to make performance consistent

 Cgroup makes performance more consistent

Latency comparision for mixed read/write
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FashMemory Systained Latency Evaluation

e Cumulative distribution function (8 NVMe SSDs, RAIDO)
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FlashMemory Conclusion

 RISL (Random Input Stream Layout) architecture is used

to ensure low latency and consistent performance
 Uses NVDIMM as write cache
« Separates read & write requests
« Combines pipeline and run-to-complete 10 handling model
« Converts all kinds of 10 pattern into sequential stream on SSD
* Optimizes data layout on SSD

e Optimize Linux to achieve consistent performance
o Cgroup / Interrupt affinity / request affinity
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Thank You!
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