

Rewriting Flash Memories by Message Passing

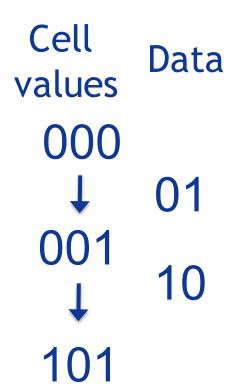
*Yue Li, *Jehoshua Bruck

*California Institute of Technology

^University of Southern California

Main Limitation Of Flash: Erase Before Write

- Problem:
 - Limits endurance, speed and power efficiency
- Potential solution: write without erasure = rewrite
- Tool: Write-Once Memory (WOM) codes

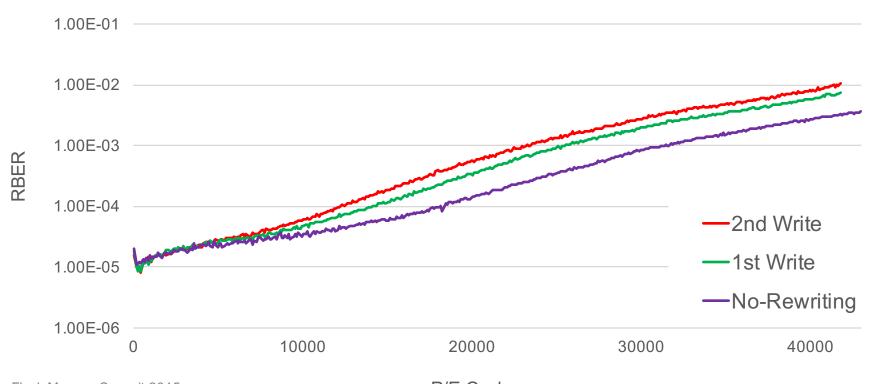


What are WOM codes?

Proposed by Rivest, Shamir '82

Data to Store	1 st -write code word	2 nd -write code word
00	000	111
01	001	110
10	010	101
11	100	011

Allow writes without erase



ShMemory Challenges of WOM codes

- 1. Interference
- 2. Storage overhead
- 3. Circuit complexity
- More?

Interference

Flash Memory Summit 2015 Santa Clara, CA P/E Cycles

Memory Storage Overhead

- Minimized by capacity-achieving WOM codes
 - Entropy polarization: Burshtein & Strugatski '13
 - Randomness extractors: Gabizon & Shaltiel '12, Shpilka '13
- Reduce over-provisioning and write amplification
 - Odeh & Cassuto '14, Yadgar et al. '15

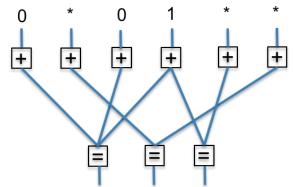
Memory Circuit Complexity

Problem:

- good WOM codes are hard to implement
- Proposed solution: "LDPC-like" WOM codes.
- Advantages:
 - 1. LDPC-like complexity
 - 2. Can share circuit modules with ECC

Memory Construction

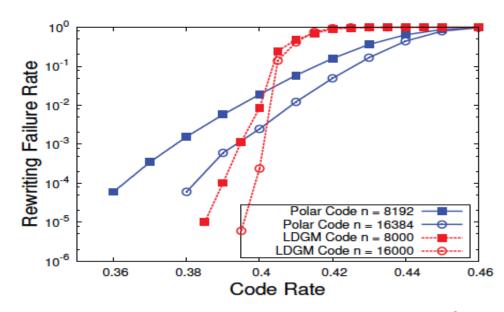
G = generator matrix of LDPC code


Encoding: find x for which

- 1. $x \ge s$ (can write without erase)
- 2. $m = Gx^T$ (word represents the message)

How to find *x* fast:

- Message passing on sparse Tanner graph
- Algorithm by Martinian, Yedidia '02
- Originally for data compression


Decoding: $m = Gx^T$

Rewriting Failures

- Message-passing encoder sometimes fails
- Failures are not as critical as in ECC => Failure rate can be higher
- Failure rate depends on code rate
- Example: rewriting an Invalid page
 - ½ of the cells cannot be rewritten
 - ⇒ WOM code rate cannot exceed ½

- Main result: "LDPC-like" WOM codes
- Benefit: Extend endurance for low complexity penalty
- Details in ISIT'15 paper:
 - "Rewriting flash memories with message passing"
- Ongoing experiments on flash chips