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Normal-Laplace Distribution
Key properties of the Normal-Laplace Distribution:

Normal-like curve but wider tails.
The two tails can behave differently from one another.

Normal
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the Threshold Voltage Distributions of Sub-20nm NAND Flash Memory”,
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Programming Errors

Multi-modality is caused by
programming errors, in which we
program the wrong level.

Erase failure.
Error in two step
programming algorithm.

The NL-distributions and the programming error rates are
parameterized by the P/E cycles.
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Capacity and Optimal Input Distribution

- Longer Lifetime
is Possible

These capacity calculations are for hard-sensing.

Optimal input distribution are uniform until late in lifetime.
Codes with rate 8/9 can support up to 28,000 P/E cycles.

C. Schoeny, F. Sala, and L. Dolecek, “Analysis and Coding Schemes for
the Flash Normal-Laplace Mixture Channel”, ISIT, June 2015.
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Why Non-Binary LDPC Codes?

LDPC codes outperform commonly used BCH codes.
Larger Galois field size results in better performance.
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Binary LDPC Codes

LDPC codes are a class of graph-based channel codes with
capacity approaching performance. These codes can be described
by a bipartite graph called a Tanner graph.
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Non-Binary LDPC Decoding Complexity

Commonly used decoding algorithms:
Binary: Min-Sum
Non-Binary: Min-Max

In non-binary LDPC, decoding complexity is of order O(q log q),
where q is the GF size.

Current research includes complexity reduction through the use of
message pruning.

D. Declercq and M. Fossorier, “Decoding Algorithms for Nonbinary LDPC
Codes Over GF”, TCOM, Apr. 2007.

Y. Toriyama, B. Amiri, L. Dolecek, and D. Markovic, “Field-Order Based
Hardware Cost Analysis of Non-Binary LDPC Decoders”, Asilomar, Nov.
2014.
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Quasi-Cyclic Non-Binary Advantages

Construction is based on lifting and labeling protographs.

Due to their implementation-friendly structure and superior
performance, QC-NB codes are well-suited for emerging data
storage applications requiring very low error rates.

We design QC-NB codes with improved performance in the low
error-rate region by removing small problematic absorbing sets
while maintaining desired code parameters.

L. Zeng, et al., “Constructions of Nonbinary Quasi-Cyclic LDPC Codes:
A Finite Field Approach”, TCOM, Apr. 2008.
J. Huang, et al., “Large-Girth Nonbinary QC-LDPC Codes of Various
Lengths”, TCOM, Dec. 2010.
L. Zhang, et al., “Quasi-Cyclic LDPC Codes: An Algebraic Construction,
Rank Analysis, and Codes on Latin Squares”, IEEE Trans. Commun.,
Nov. 2010.
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passing algorithms, largely due to subgraphs called absorbing sets.
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Non-Binary Absorbing Sets

Edge weights and variable node values are elements of GF (q).
The shown absorbing set is called elementary absorbing set.
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Same topological conditions as in the binary case.

The edges in the fundamental cycles must satisfy the weight
conditions.
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Absorbing Set Removal

1 Identify a list of problematic absorbing sets.

2 Find all binary absorbing sets of interest in the unlabeled
bipartite graph.

3 For each candidate, check if the weight conditions are
satisfied.

4 The labeling parameters in the process of constructing the
QC-NB-LDPC code are modified such that the weight
condition of absorbing sets is not satisfied.

5 Continue until no more non-binary absorbing sets can be
eliminated.

B. Amiri, J. Kliewer, and L. Dolecek, “Analysis and Enumeration of
Absorbing Sets for Non-Binary Graph-Based Codes”, TCOM, Feb. 2014.
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Shifting Gaussian MLC Channel

First let us view the results from a previously used model.

Each state is modeled as a Gaussian distribution with shifting
mean and variance dependent on the P/E cycles.
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Shifting Gaussian MLC Channel

First let us view the results from a previously used model.

Each state is modeled as a Gaussian distribution with shifting
mean and variance dependent on the P/E cycles.

Binary LDPC code decoded using the min-sum algorithm.
Non-binary LDPC code decoded using FFT-sum-product
algorithm.
Block lengths ≈ 2k bits.
Code rates ≈ 8/9.
GF sizes = 4.
Column weights = 4.
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Shifting Gaussian MLC Channel

Superior performance for non-binary LDPC codes with AS removal
compared to BCH and binary LDPC codes.
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Normal-Laplace Mixture MLC Channel

”Soft-Information” refers to 6-reads.
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Code rate ≈ 8/9.
GF size = 4.
Column weight = 4.
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Non-binary LDPC codes offer excellent error-correcting
performance over NAND Flash models.

AS removal provides very promising results over the Gaussian
Flash channel model.
Further performance improvement is achievable over the NL
model by accurately identifying the objects which dominate
the error floor (ongoing research).
Concurrent work on partial-response channels demonstrated
significant performance gain by properly identifying and
removing the right objects.

A. Hareedy, B. Amiri, S. Zhao, R. Galbraith, and L. Dolecek, “Non-Binary
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