

High Performance, FPGA-Optimized LDPC for Storage

Helen Tarn Sr. Engineering Manager Xilinx Inc.

BCH codes are running out of steam

- Can't take advantage of soft-data
- Performance is limited to the Shannon limit for a hard channel

LDPC codes

- Near Shannon-limit performance
- Take advantage of soft-data
- Good implementations of LDPC codes are low power and cost effective
- No standards for LDPC in storage space
- Code "growth" technology with best-in-class coding performance at very low cost

DSP work is focused on the LDPC encoder, decoder and statistics processing below

© Copyright 2015 Xilinx

- Best-in-class code performance near Shannon limit
- Achieved low error floor under 10⁻¹⁵ with proprietary optimization method
- Support for code rate change on-the-fly
- Support both hard decision and soft decision decoding
- High throughput and low latency performance
- Scalable architecture supporting various options
- FPGA optimized for minimal area/power
- Provides decoder status and statistics interfaces

Feature	Specification
Codeword Length	1K Bytes + parity
Code Rate	Various options above .89
Rate switching on-the-fly	\checkmark
Error Floor	Better than 10 ⁻¹⁵
Two Step Decoding	\checkmark
Early Termination	\checkmark
Device Supported	Ultrascale, 7-series
Clock Rate	400MHz

- Advanced code construction methodology for best code performance
- Achieved low error floor using proprietary optimization technique
- Near Shannon limit performance

© Copyright 2015 Xilinx

□ >3x Average Bit Errors Corrected using LDPC Soft Decision Decoding

FEC Туре	Average bit errors corrected
BCH (Hard Decision)	70
LDPC Hard Decision Decoding	75
LDPC Soft Decision Decoding	265

*Codeword length = 1K User Bytes + 10.7% parity for all three FECs

- □ Single LDPC instance for easy integration
- □ Achieve 400 MHz on 7 series and UltraScale[™] FPGAs
- □ Small footprint low LUT counts

- **Custom made NAND FMC daughter card**
- □ Work with Kintex® UltraScale KCU105 board
 - XCKU040-2FFVA1156E FPGA
- □ NAND characterization and hardware validation

Xilinx offers LDPC with industry-leading performance in all aspects:

- Error floor
- Resource utilization
- BER performance
- Throughput