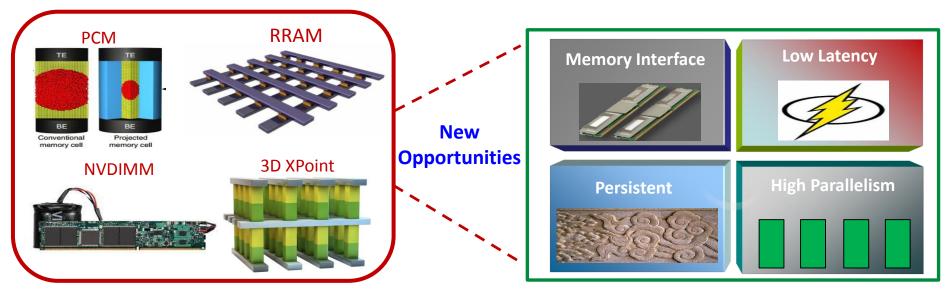


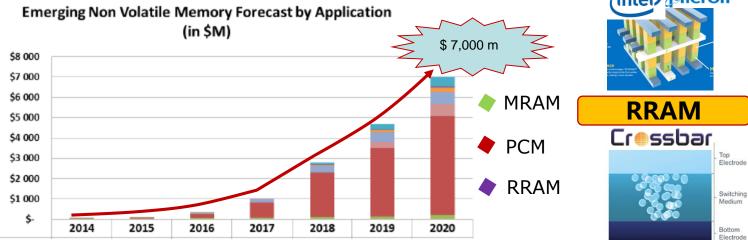
Lightweight User-Mode File Systems for Storage Class Memory


Yuangang Wang

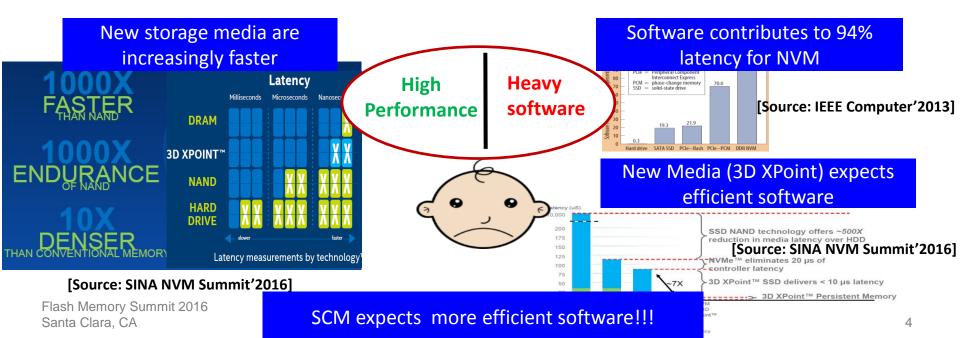
Shannon Cognitive Computing Laboratory, Central Research Institute,

Huawei Technologies Co., Ltd.

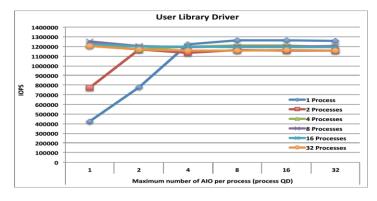
Flash Memory SCM Era is Coming!

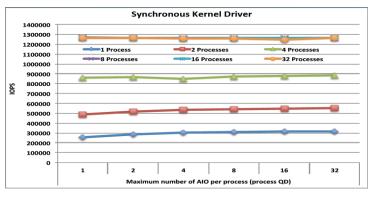

Storage class Memory is the New Storage!

MRAM


EVERSPIN

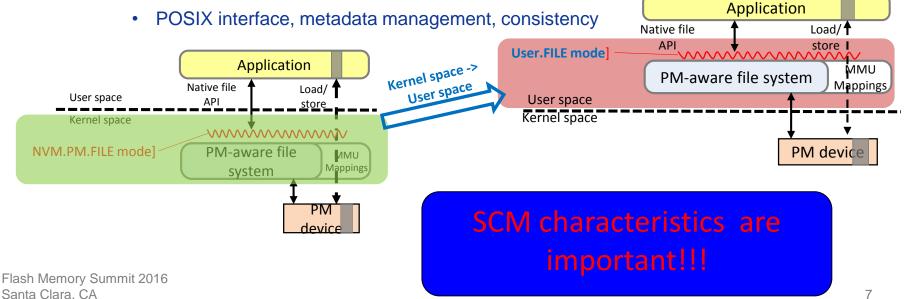
[Yole Développement. Emerging Non-volatile Memory. Lyon: Yole Développement; 2015. p. 275.]




High performance storage like Storage Class Memory (SCM) such as 3D XPoint drives innovation to storage systems

- User Library Driver V.S. Kernel Driver (Performance test for PCM by HGST)
 - Similar peak IOPS, kernel driver demonstrates 8x CPU resource consumption, and
 1.7x access Latency, compared to user driver (3.8 us V.S. 2.2 us)
- Reason: High context switch and system call overhead

Flash Memory Summit 2016 Santa Clara, CA [Source: NVMW'15 Block Device Driver Design for Fast NVM Class Devices]


- SCM file systems: BPFS, SCMFS, Aerie, PMFS, NOVA
 - None of exist file system is in user mode meanwhile deep-leverage SCM performance (file indexing latency, parallelism, NUMA-aware)

	User-Mode	Unified File Indexing	Leverage Parallelism	NUMA-Aware Placement
Ramfs	×	×	*	×
BPFS ^[SOSP'09]	×	×	*	×
SCMFS ^[SC'11]	×	×	*	*
Aerie ^[EuroSys'14]	~	×	*	*
PMFS ^[EuroSys'14]	×	×	*	×
EXT4-DAX	×	×	*	×
NOVA ^[FAST'15]	×	×	~	*
LUMFS	\checkmark	~	\sim	\checkmark
emory Summit 2016	•	•	•	

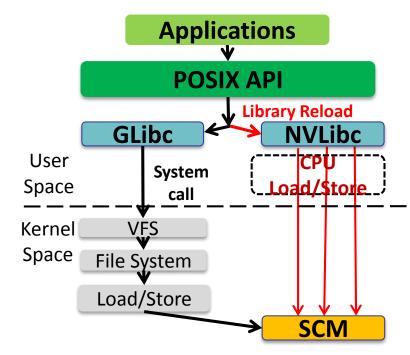
FlashMemory

User-mode File System for SCM

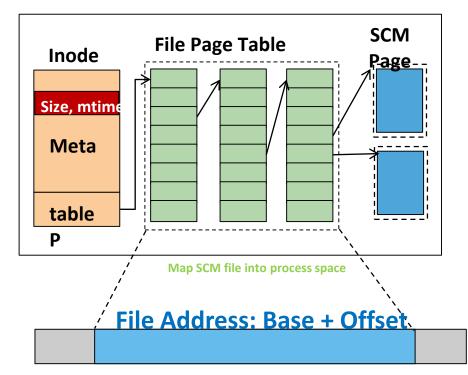
- We develop LUMFS: User-mode system for SCM
 - Bypassing kernel
 - All in user-mode

Outline

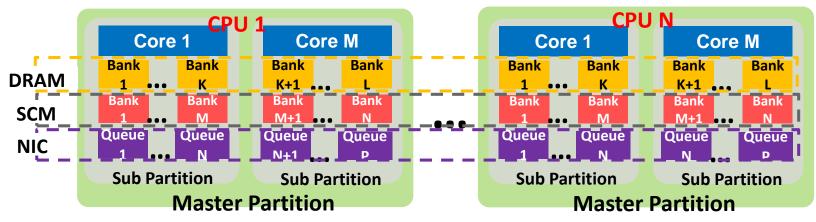
- Motivation: User-Mode File Systems
- LUMFS: Lightweight User-Mode File System
- Evaluation
- Conclusion


For a user-mode SCM based system that compatible to legacy applications:

- How to handle the POSIX interface?
 - User-mode library "NVLibc"
- How to organize and localize SCM data efficiently?
 - MMU/TLB compatible data management
- How to fully utilize the parallelism of SCM?
 - Resource partitioning
- How to maintain data consistency?
 - Hybrid logging, atomic instructions, CoW

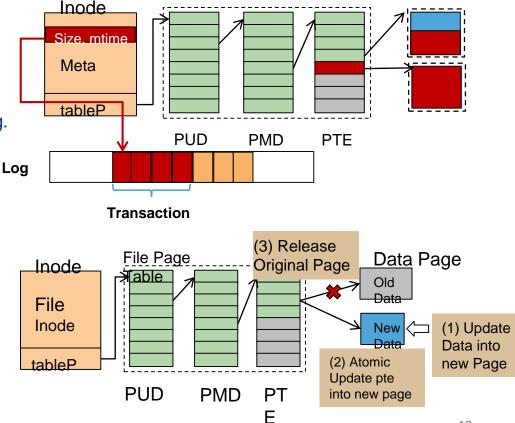

POSIX-compliant Interface

- User-mode Library (NVLibc) provides POSIX interfaces
 - Override GLibc library at runtime by LD_PRELOAD execution environment
 - No modification to source codes
- Use file path to distinguish different FS
 - E.g.,
 - LUMFS/NVlibc: "/mnt/lumfs/test"
 - Kernel/Glibc: otherwise


- Key Idea: Unified memory and file indexing
 - All files are mapped into process's virtual address space
 - SCM spaces are organized at page granularity
 - The mapping between file location and SCM pages are managed using page tables, and translated by the MMU

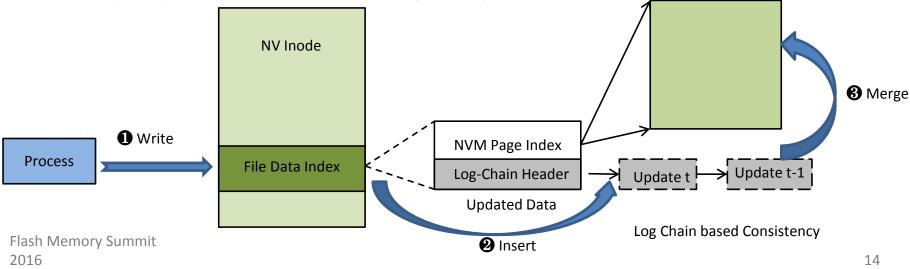
Process Virtual Address Space

Resource Partition


- Resource Partition: to leverage parallelism and reduce contention
 - Master Partition (Per-CPU): Network Card, NUMA Node (SCM & DRAM)
 - Sub Partition (Per-Core): Network card queues, Banks (SCM & DRAM), Caches
- Intelligent Resource Allocation
 - Scatter metadata and file data into multiple sub partitions as possible
 - NUMA-Aware Schedule: Binding thread to local NUMA based on partition of files being accessed
 Flash Memory Summit 2016
 Santa Clara, CA

Metadata & Data Consistency **Flash** Memory

Metadata Consistency


SUMMIT

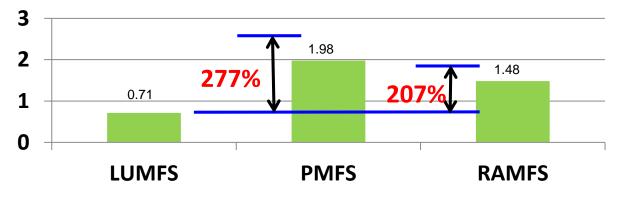
- Atomic Update for small granularity • update (e.g. size, atime, mtime)
- **Per-partition logging** for large update (e.g. • SCM page allocation)
- Data Consistency
 - Append Write: no worry for data, atomic • update on metadata: (size + mtime)
 - **Copy-On-Write** large granularity data • write, atomic update file page table index
 - **Per-partition data logging: small** granularity data write

Flash Memory Write Consistency : Log Optimization

- Fusion Data and Log optimization
 - Log-Chain to reduce log cost.
 - Updates are linked into Log-Chain (Out of Place update, no log).
 - Read check the part of Log-Chain.
 - Merge Log-Chain into file data ,when large enough

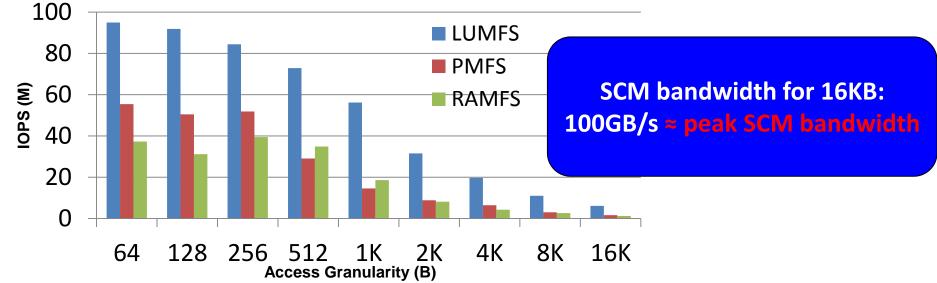
NVM Page Data

- Platform
 - Software: CentOS 6.5, Linux Kernel • 3.5.0, FIO 2.2.10
 - Hardware: •


	Server	Huawei RH2288 V3	
Processors	CPUs	2	
	Cores (hyper-thread)	24	
	Model	Intel Xeon E5-2620,	
	IVIOUEI	2.4GHz	
Memory	Channels	8	
	Frequency	DDR4 2133MHz	
	Capacity	384GB	
SCM	Capacity (DRAM Simulated)	192GB	

- **Compared FS**
 - LUMFS : user-mode FS
 - RAMFS: kernel-mode FS, no ٠ consistency
 - PMFS: kernel-mode FS, • consistency

Demo system available at booth 523 (Huawei)



Latency per OP (us)

- LUMFS performs better than kernel-mode FS (PMFS & RAMFS)
 - LUMFS can simplify storage software

Flash Memory FIO performance (random read)

- LUMFS retains its benefits on fully utilizing the parallelism of SCM
 - NUMA, multiple channels, multiple banks

Reduced lock contention through resource partition
Flash Memory Summit 2016
Santa Clara, CA

- LUMFS: A User-Mode File System for SCM
 - Manage metadata and data in user mode
 - POSIX-compliant interface support MySQL application
 - **Unified file indexing**: MMU/TLB compliant file page table
 - Thorough resource partitioning leverage SCM parallelism and reduce resource contention
 - Hybrid consistency mechanism for different types of data/metadata
- LUMFS can perform 4KB Random Read/Write IOPS: ~3x PMFS/RAMFS
- It's time for User-Mode File System for SCM

Thank You !

We are hiring! Welcome to join us!

Shannon Cognitive Computing Laboratory, Huawei Technologies Co., Ltd. wangyuangang@huawei.com