

ASIC/Merchant Chip-Based Flash Controllers

Jeff Yang Siliconmotion

Flash Memory Summit 2016 Santa Clara, CA

- Basic controller architecture.
- The challenge on the Merchant Chip-based flash controller.
- The Flash selection combination and the performance requirement.
- Flash write channel and the read channel throughput analysis.
- Hard-decoding only BCH based controller for SATA application throughput requirement.
- From the hard-decoding only to soft-decoding controller.
- Correction capability.
- 3D vs. 2D's NAND architecture.
- Vth tracking and the Data-retention issue.
- RAID

Flash Memory Summit 2016 Santa Clara, CA

Buffer

for

others

Flash Memory Summit 2016 Santa Clara, CA

ב חכ

4

ry Challenge: Support all combinations and cost efficiency

2D/3D

One-pass

Two-pass

Multi-pass

SLC usage

SLC caching

TLC direct

SLC/TLC dynamic buffer Full DRAM Non-DRAM

External

Partial DRAM

SiliconMotion

Flash Memory Summit 2016 Santa Clara, CA

© Copyright Silicon Motion, Inc., 2012. All Rights Reserved.

Traditional Write/Read channel with BCH h Memory Fla B С Α Encoder randomizer Chien-G Key-Ε \mathbf{F} D Flash detector equation search channel Corrector RMW System DE-Data randomizer A' buffer Host DMA

- A: 1024B
- B: 1024B randomized.
- C: 1024B + 126B-parity
- D: C +error from flash

- A': 1024B with error bit.
- E: syndrome (126B)
- F: error-polynomial (128B)
- G: error location and err-mag

- Share the decoder's hardware with multi-channel.
- Each channel will not encode and decoder at the same time. Share the encoder with Detector.
- The decoder's output should satisfy the host maximum read throughput.

4-stage pipe-line BCH

single key-quation with 4 stage pipeline

T=72bit mode and error bit=72

- BCH 72bit mode, 72bit error, chunks size is 1024B + 126B = 1150B
- DMA is 100MHz parallel 16 → 576cycles (200MB/sec per channel)
- Chien-search is operated at 330MHz with parallel16 circuit. → 576cycles.
- Chien-search throughput is 1024/(576x3ns) = 592MB/sec.
- Key-equation cycle is proportional to error bit. (throughput, power consumption bottleneck)
- Key-equation's execution cycle should under 576 cycles
 - It will need a very high parallelism Key-equation on its hardware.

Key-equation operation efficiency.

1KB + 126B with 72bit protection. Cover range to UBER~1e-15 RBER = 3.1e-3 Average error bit = 28bits per chunk

SUMME

2KB + 252B with 134bit protection Cover range to UBER ~1e-15 RBER = 3.9e-3 Average error bit = 71bits per chunk

- An very efficiency BM, simplified and inversion free algorithm has been used as an original.
- The further reduction provide much better efficiency.
 - 1KB 10bits error, 288 → 42 cycles. ~85% improvement. (BOL)
 - 2KB 20bits error, 654 → 87 cycles. ~87% improvement. (BOL)
 - 1KB 28bits error, 200 → 127cycles. ~55% improvement. (EOL)
 - 2KB 71bits error, 912 → 414 cycles. ~55% improvement. (EOL)

- In order to provide better decoder's correction capability, using the soft-info to get more reliability bits.
- NAND interface support.
 - Traditional read/retry interface.
 - Direct soft-info interface.

DSP engine's buffer size

- The buffer size is the capability to contain the number of chunks soft-bit.
- Access addition soft-info from NAND may need additional read busy time.
- Read the soft-bit under the same busy time will have higher efficiency, but buffer size requirement is huge.

Soft-decoding throughput limitation

- One Transfer time = 2.5ns/1B x 18432B = 46us (400MTs)
- Assume DSP-buffer size 16KB.
 - 9 tR time + 12 transfer-time = 9x(100us) + 12 x (46us) = 1452us
 - Throughput = 64KB/1452us = 44MB/sec
- Assume DSP-buffer size 64KB.
 - 3tR time + 12 transfer-time = 3x(100us) + 8 x(46us) = 668us.
 - Throughput = 64KB/668us = 95MB/sec

In Client SSD applications,

Soft-decoding will regard as the ERROR-Recovery flow. We will not ask the throughput under recovery mode. But we will take care the recovery mode trigger rate.

Flash Memory Summit 2016 Santa Clara, CA

ECC Chunk

- Fixed code rate: around 0.9, ECC chunk size: 1KB/ 2KB/ 4KB
- Hard-decoding is based on BCH, and soft-decoding is based on LDPC with less than 3-bit channel reliability values.
 - Correction Performance: 4KB better than 1KB
 - Decoding Latency: 1KB better than 4KB

Failure range from 2D to 3D. **Flash** Memory SUMMIT **3D BLOCK** 2D BLOCK Program order L Pair-Page Pair-Page WL М М 0 0 0 U L Damage range Pair-Page Pair-Page М WL of Program U 0 WL fail / Word-Damage 0 WL Pair-Page line Open range of М 2 0 Program fail L L Pair-Page М WL Pair-Page Ν 3 U 0 Damage Π L L Pair-Page range of Pair-Page WL М Damage range of Word-line open Μ 0 0 U Word-line U L short L Pair-Page М WL Pair-Page Block М Block 5 0 U WL U Damage range of two Word-line 1 L short Pair-Page WL Μ 6 0 L Pair-Page М Ν U Pair-Page U WL Μ WL Pair-Page М Μ Program order

- Both the 2D and 3D will have the data retention problem.
 - 1Znm MLC need 6~10 read-retry tables, But TLC need 40~45 tables with less endurance and retention.
 - 3D will have more severe Data retention issue.

[ref]: E.S. Choi, S.K. Park, "Device Considerations for High Density and Highly reliable 3D NAND Flash Cell in Near Future". IEDM 2012

Flash Memory

SUMMIT

The 3D flash is good!! What are we waiting for? COST, COST, COST!!!

		2D	3D
	EDURANCE	After cycling: Keep the same Error distribution in LOW RBER	After cycling: Keep the same Error distribution in LOW RBER
	Data RETENTION	The RBER become worse, the Vth also shifting	Only the Vth-shifting, but RBER is still good.
HDD Tre SSD Tre	end: RS \rightarrow LDPC \rightarrow NB-LDPC end: HM \rightarrow RS \rightarrow BCH \rightarrow LDPC	We Always Need A Stronger ECC	WHY target RBER= 3e-3? BCH 72bit/1KB will provide UBER< 1e- 15 with RBER = 3e-3
	Target	RBER requiremen	
Norm operat (Base-I	hal Extreme low power. tion Keep the host throughput line)	RBER = 3e-3	Need a ECC stronger th
Reliab extens	ility Vth-tracking to lowering the sion RBER. Soft-info to have stronger correction	RBER = 1e-2 ~ 1.2e-2	MI Provide the most-cost efficiency satisfy the reliability

ECC design loop related to NAND characteristics.

- We already have 6th generation LDPC decoder.
- Keep improving the LDPC performance.
- For higher throughput ~8GB/sec, we may go back to step1.
- After 28nm process, the design iteration depth will from code-construction to trial APR.
- EX: Find the Routing congestion issue in step 4, it may need to solve from step1.

Before the RAID protect flow.....

Flash Memory

DRAM/ DRAM-less/ Small DRAM SLC-first/ TLC-direct write/ Dynamic SLC One-pass / Multi-pass/ Pair-page mapping WL to WL short Failure range

All the issues combine together

Capacity (RAID overhead) Binary/arbitrary

on

Program failure DRAM-backup/ Flash-cache/ RAID recover/ WL open Failure range Recovery latency

BUT THE SAME CONCEPT IS......

- I you doin t want to use RAID, what alternative y
 - Read-back check after program.

onMotion