

ASIC/Merchant Chip-Based Flash **Controllers**

Jeff Yang **Siliconmotion**

Flash Memory Summit 2016 Santa Clara, CA 1

- **Basic controller architecture.**
- The challenge on the Merchant Chip-based flash controller.
- **The Flash selection combination and the performance requirement.**
- **Flash write channel and the read channel throughput analysis.**
- Hard-decoding only BCH based controller for SATA application throughput requirement.
- From the hard-decoding only to soft-decoding controller.
- Correction capability.
- 3D vs. 2D's NAND architecture.
- Vth tracking and the Data-retention issue.
- RAID

Flash Memory Summit 2016

Flash Memory Summit 2016

Santa Clara, CA **4 and 2011 to the Clara, CA 4 and 2011 to the Case of Case of**

Challenge: Support all combinations and cost efficiency

2D/3D

One-pass

Two-pass

Multi-pass

SLC usage

SLC caching

TLC direct

SLC/TLC dynamic

External

Non-DRAM

Partial DRAM

Flash Memory Summit 2016 Santa Clara, CA 5. The Care of the Care of the Care of the Control of the Care of the Care

© Copyright Silicon Motion, Inc., 2012. All Rights Reserved.

Traditional Write/Read channel with BCH
Memory **Flas** \overrightarrow{A} and omizer \overrightarrow{B} Encoder \overrightarrow{C} G Chien- $F \mid \text{Key-} \mid E \mid$ $\left| \begin{array}{c} \n\text{Key-} \\
\text{equation} \n\end{array} \right|$ detector Chien- F Key-
search equation E detector D Flash channel $\begin{array}{c|c}\n\hline\n\text{RMW} & \text{System} \\
\hline\n\text{Data} & \text{buffer}\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\text{DE}- \\
\hline\n\text{A'} & \text{randomizer}\n\end{array}$ DE- A' Host DMA

- **A: 1024B**
- B: 1024B randomized.
- \blacksquare C: 1024B + 126B-parity
- D: C +error from flash
- A': 1024B with error bit.
- E: syndrome (126B)
- F: error-polynomial (128B)
- G: error location and err-mag

- **Share the decoder's hardware with multi-channel.**
- **Each channel will not encode and decoder at the same time. Share the encoder with Detector.**
- The decoder's output should satisfy the host maximum read throughput.

4-stage pipe-line BCH

SUMMIT single key-quation with 4 stage pipeline

hMemory

 $T=72$ bit mode and error bit=72

- BCH 72bit mode, 72bit error, chunks size is $1024B + 126B = 1150B$
- \blacksquare DMA is 100MHz parallel 16 \rightarrow 576 cycles (200MB/sec per channel)
- Chien-search is operated at 330MHz with parallel16 circuit. \rightarrow 576cycles.
- Chien-search throughput is 1024/(576x3ns) = 592MB/sec.
- Key-equation cycle is proportional to error bit. (throughput, power consumption bottleneck)
- Key-equation's execution cycle should under 576 cycles
	- It will need a very high parallelism Key-equation on its hardware.

Key-equation operation efficiency.

1KB + 126B with 72bit protection. Cover range to UBER~1e-15 $RBER = 3.1e-3$ Average error bit = 28bits per chunk

SUMMI

2KB + 252B with 134bit protection Cover range to UBER ~1e-15 RBER = 3.9e-3 Average error bit $= 71$ bits per chunk

- An very efficiency BM, simplified and inversion free algorithm has been used as an original.
- **The further reduction provide much better efficiency.**
	- 1KB 10bits error, 288 \rightarrow 42 cycles. ~85% improvement. (BOL)
	- 2KB 20bits error, 654 \rightarrow 87 cycles. ~87% improvement. (BOL)
	- 1KB 28bits error, 200 \rightarrow 127 cycles. ~55% improvement. (EOL)
	- 2KB 71bits error, 912 \rightarrow 414 cycles. ~55% improvement. (EOL)

- In order to provide better decoder's correction capability, using the soft-info to get more reliability bits.
- NAND interface support.
	- Traditional read/retry interface.
	- Direct soft-info interface.

DSP engine's buffer size

- The buffer size is the capability to contain the number of chunks soft-bit.
- Access addition soft-info from NAND may need additional read busy time.
- Read the soft-bit under the same busy time will have higher efficiency, but buffer size requirement is huge.

Soft-decoding throughput limitation SUMMIT

- \blacksquare One Transfer time = 2.5ns/1B x 18432B = 46us (400MTs)
- **Assume DSP-buffer size 16KB.**
	- 9 tR time $+ 12$ transfer-time = $9x(100us) + 12x(46us) = 1452us$
	- $Throughout = 64KB/1452us = 44MB/sec$
- Assume DSP-buffer size 64KB.
	- \cdot 3tR time + 12 transfer-time = 3x(100us) + 8 x(46us) = 668us.
	- $Throughout = 64KB/668us = 95MB/sec$

In Client SSD applications,

Soft-decoding will regard as the ERROR-Recovery flow. We will not ask the throughput under recovery mode. But we will take care the recovery mode trigger rate.

Flash Memory Summit 2016

ECC Chunk

- Fixed code rate: around 0.9, ECC chunk size: 1KB/ 2KB/ 4KB
- Hard-decoding is based on BCH, and soft-decoding is based on LDPC with less than 3-bit channel reliability values.
	- Correction Performance: 4KB better than 1KB
	- Decoding Latency: 1KB better than 4KB

FlashMemory Failure range from 2D to 3D. Block WL N L Pair-Page
0 0 WL Pair-Page $\frac{1}{0}$ M I. M WL $\begin{bmatrix} 2 & \text{Pair-Page} \\ 2 & 0 \end{bmatrix}$ M WL $\begin{array}{cc}\n\mathbf{WL} & \text{Pair-Page} \\
\mathbf{3} & 0\n\end{array}$ M U WL M Pair-Page M M 2D BLOCK 2 3 4 5 6 7 8 Program order WL Pair-Page $\begin{array}{c} L \\ \hline 0 \end{array}$ M U WL $\begin{array}{c|c}\n\textbf{WL} & \text{Pair-Page} & \text{L} \\
\textbf{5} & 0 & \text{M}\n\end{array}$ M U WL $\begin{array}{c|c}\n\textbf{WL} & \text{Pair-Page} & \text{L} \\
\textbf{6} & 0 & \text{M}\n\end{array}$ M U Damage range of Program fail Damage range of Word-line open Damage range of two Word-line Block
e of two Word-line
short WL 0 Pair-Page θ Pair-Page 1 Pair-Page N WL 1 Pair-Page Ω Pair-Page 1 Pair-Page N L M U L M U L M U L M U L M U WL M Pair-Page $\begin{array}{c} \n\frac{1}{M} \\
0\n\end{array}$ L M 3D BLOCK $\begin{array}{c|c}\n\text{Pair-Page} & \text{L} \\
\hline\n0 & \text{U}\n\end{array}$ M Damage range of Program fail / Word line Open Damage range of Word-line short

Program order

- Both the 2D and 3D will have the data retention problem.
	- 1Znm MLC need 6~10 read-retry tables, But TLC need 40~45 tables with less endurance and retention.
	- 3D will have more severe Data retention issue.

[ref]: E.S. Choi, S.K. Park, "Device Considerations for High Density and Highly reliable 3D NAND Flash Cell in Near Future". IEDM 2012

The flash trend and ECC correction

SUMMIT

The 3D flash is good!! What are we waiting for? COST, COST, COST!!!

ECC design loop related to NAND characteristics.
FlashMemory SUMMIT

- \blacksquare We already have $6th$ generation LDPC decoder.
- Keep improving the LDPC performance.
- For higher throughput ~8GB/sec, we may go back to step1.
- After 28nm process, the design iteration depth will from code-construction to trial APR.
- **EX: Find the Routing** congestion issue in step 4, it may need to solve from step1.

Before the RAID protect flow…..

Flash Memory

DRAM/ DRAM-less/ Small DRAM SLC-first/ TLC-direct write/ Dynamic SLC

One-pass / Multi-pass/ Pair-page mapping

WL to WL short Failure range

All the issues combine together

Capacity (RAID overhead) Binary/arbitrary

 $\mathbf{0}$

Program failure DRAM-backup/ Flash-cache/ RAID recover/

WL open Failure range Recovery latency

BUT THE SAME CONCEPT IS…….

Read-back check after program.

onMotion