

NVMe[™] Lessons Learned Deploying NVMe[™] Flash in Real Systems

Facilitated by Tom Heil, Senior Systems Architect & Distinguished Engineer, Broadcom Forum A-12: NVMe and PCIe SSDs

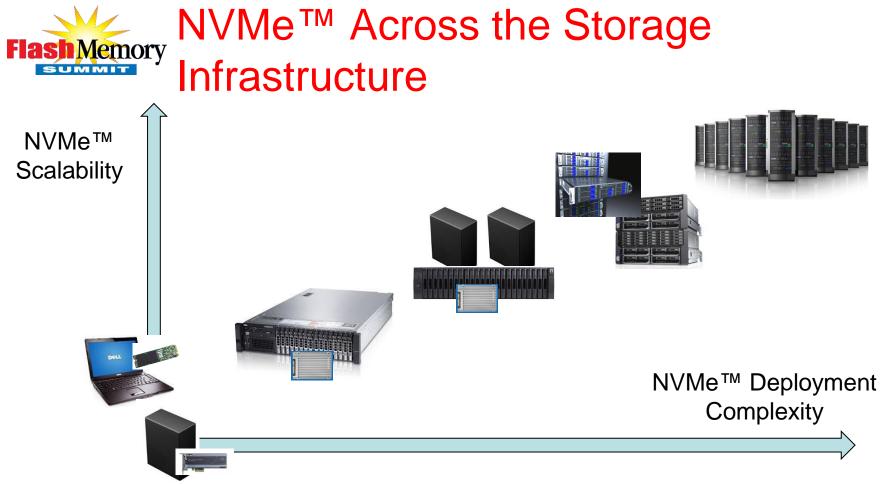
Introduction

Panel Member Presentations

NVM Express® Storage Genesis

NAND Flash in Mainstream IT

PCIe Flash Host Adapters


Standard Storage-optimized PCIe Form Factors: U.2, M.2

This is just the beginning ...

Flash Memory Across the Storage Infrastructure

- PCIe signal routing, power, thermal, clocking
- Cabling: inside the box > box-to-box
- Hot-plug serviceability: synchronous > asynchronous
- Manageability: device > device bay > enclosures
- Performant, SSD-optimized Data Protection: RAID & replication
- High Availability Dual-Domain Topologies
- Storage sharing: sub-rack > rack > data center > cross geography
- Creative M.2 use models

Gary Kotzur

Executive Director / Senior Distinguished Engineer

Platform Solution Considerations

- Industry
- Standards
- Drive Metrics
- Platform

NVMe[™] SSD Drive History SUMMIT

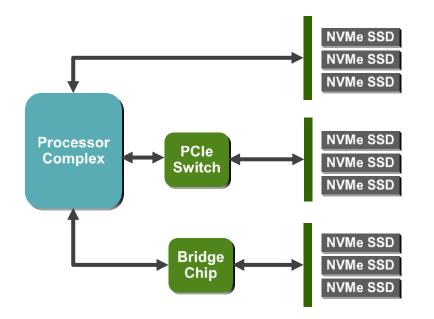
Great Performance!

End-User Needs

- Front Access
- Hot-plug ability
- Form-Factor(s)
 - Standard Form-factor
 - Higher power
 - Connector
 - Standard
 - Multiple lanes

 - Backward Capability
 No active backplane devices
- Protocol
 - Industry standard
 - Inbox
 - High Performance
- Management

Solution


- 2.5" 15mm FF
- 25W power envelope
- SFF-8639 (U.2 profile)
 - x4 or x2/x2 ports PCIe
 - x2 SAS or x1 SATA
- NVMe protocol

Benefits

- High performance of PCIe
- Hot Serviceability
- Compatibility with 2.5" SAS/SATA
- 25W power envelope
- NVMe: higher performance
- Open driver with inbox support
- Reduce component counts

Platform Solution

Challenges

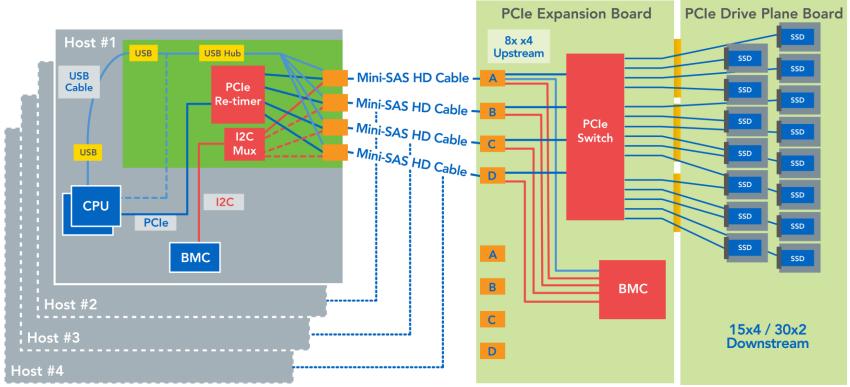
- Performance balance
- Power
- Thermal
- Mechanical
- System Management
- Serviceability
- Reliability
- Availability
- Security
- Co-existence with SAS/SATA
- Connectivity options
- Clocking
- Resets
- Dual-port

Chris Petersen

Hardware Systems Architect

facebook

Modular and Flexible

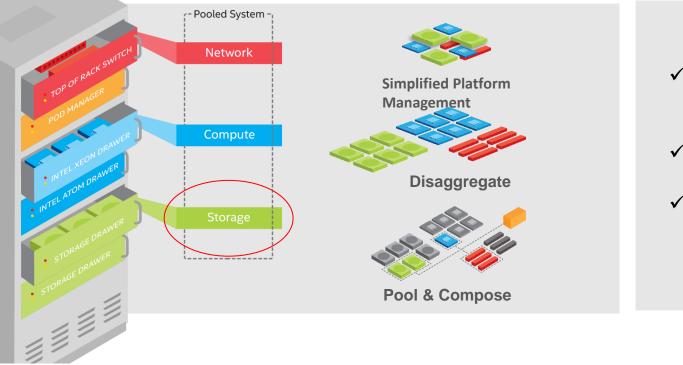

> Scalable

JBOF Architecture

- Open source + Surprise hot-plug
 - NVMe and PCIe Advanced Error Reporting (AER) drivers
 - Downstream Port Containment (DPC) driver
 - All 1's completions
 - NVMeCLI

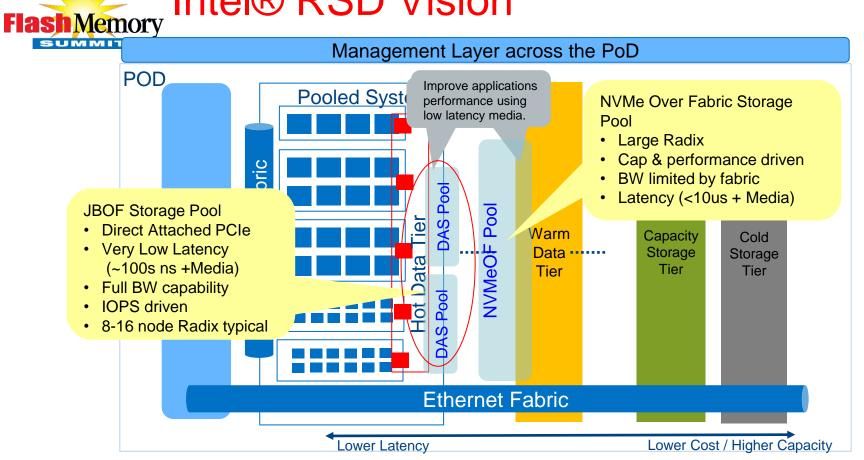
Challenges and solutions

- Cabling
 - Mini-SAS HD cables with full sideband
- M.2
 - Add hot-plug and thermal management

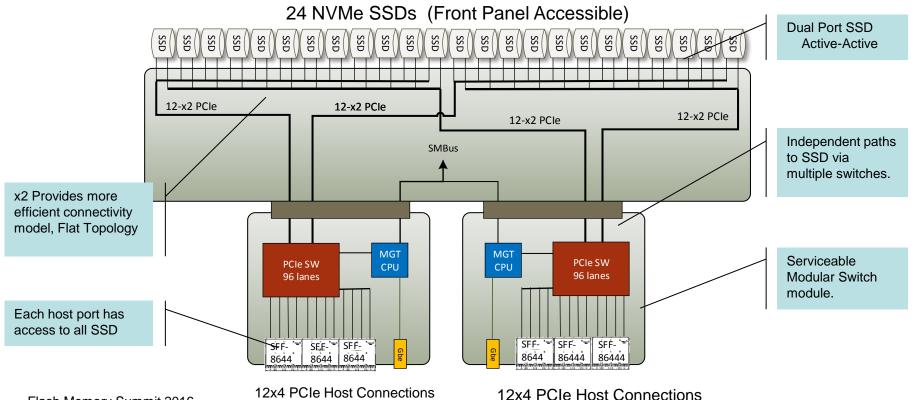


Hot Tier Pooled Storage

Don Faw Principal Engineer, Intel Corp



Rack Scale Design Overview



- ✓ User-Defined Perfor mance
- ✓ Maximum Utilization
- ✓ Interoperable Soluti ons

Intel[®] RSD Vision

- Multi host connection
 - Lots of Bulky cables vs drive serviceability
 - Keep cables stationary if possible, reduce cable mgt
 - SSD density vs serviceability, Font panel accessibility
 - Host radix within the rack
 - Multiple JBOF pools/rack vs ganging PCIe switches
 - NVMe Over Fabric for larger radix, multi-rack
 - Host Clocking requires SRIS
 - Repeaters to drive PCIe cables need SRIS capability
- Drive telemetry
 - Allocation of storage resources based on drive perf parameters
 - R/W BW perf/namespace, QoS, OOB accessible

Ziv Serlin

Director System Architecture

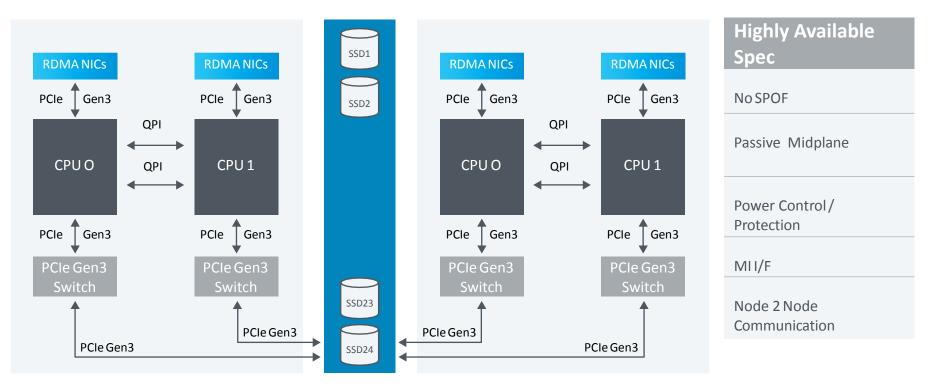
Overall E8 System Objective

Very high density

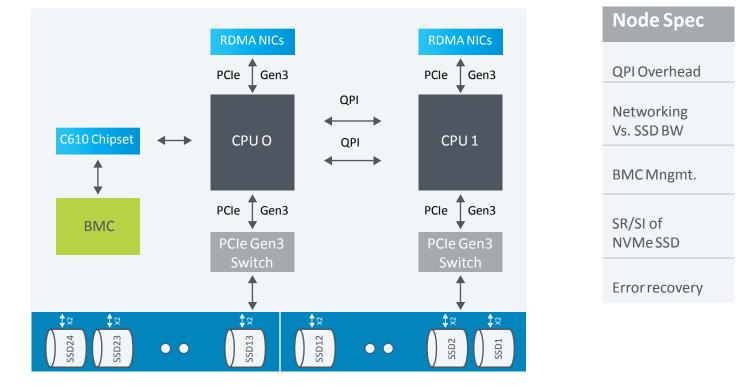
Latency on par with local NVMe

Extract the full performance of the SSDs

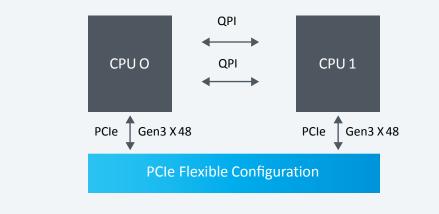
Easy to use & highly scalable

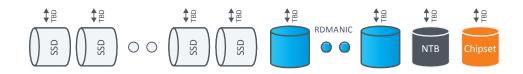


Cost-effective and low TCO



Dual controller NVMe[™] architecture




Flash Memory Summit 2016 Santa Clara, CA *SR/SI – Surprise removal / Surprise insertion

Peer 2 Peer

- PCIe physical layer with HA enclosure (backplane)
- Power/Reset sequence in dual port environments
- SI & SR of controller and NVMe devices
- BIOS support for unexpected errors during bootup
- Cooling, Power & power protection

*SR/SI – Surprise removal / Surprise insertion

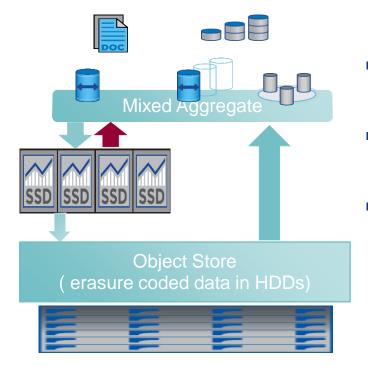

Tim Emami

Technical Director

All-Flash Arrays need "Value" Dual-Ported NVMe™ SSDs

- Parity Raid Economics
 - lowest \$/GB ("Data-Center grade" NAND)
 - Aggregated capacity and performance per node⁷⁷⁰
 - "Repair-in-place" mechanisms for hi-cap SSDs
- "Modest" peak performance
 - Reduce latency at lower concurrencies
 - Throughput improvements over 12G SAS
- "Hi-Availability" configurations with no SPOF
 - Reliable dual-ported NVMe..
 - PI and SGL support
 - NS Reservations
 - Robust management infrastructure
 - NVM-MI development is now under-way

- DASD created under-utilized "Islands of Flash"
 - NVMe-over-Fabric expansion allows dynamic provisioning of Compute to Flash ratio
- RDMA enabled Fabrics (IB, RoCE..) dramatically reduce the cost of remote vs local access
 - Addresses OS bottlenecks with traditional Block interfaces for AFAs
 - NVMe-over-Fabric enables "scale-up" expansion
- Needs "Value" Dual-Ported NVMe SSDs plus;
 - Controller Memory Buffer
 - SR-IOV/Multi NS
 - SRIS/NRIS


NVMe[™] Device/Enclosure Management

- Traditional Enterprise "Scale-up" Storage architectures require an "Enclosure Management Plane"
 - Physical/Protocol
 - SW/Logical
- SAS was meant for expansion and included a SMP/SES management overlay
- NVMe started life as a "fast path" interconnect for locally attached NVM
- NVMe-MI is meant to close the management gap
 - Mix of requirements from "Server" and "Storage" folks..
 - SMBus, PCIe "In-Band", Ethernet
 - NVMe-MI command set
 - MCTP binding..?
 - Needs some processing power/SW in the enclosure
 - MI Standard is still evolving (e.g. PD pin..)

Tiering / Hybrid Use-Cases

Hybrids remain relevant, but...

- Performance optimized SFF HDDs are being displaced by SSDs
- Capacity optimized LFF HDDs offer the lowest bit cost for colder data
- Tiering remains relevant but; "Hybrid" implies a very different mix of devices/media
 - Not about "IOPs Efficiency" anymore..
 - The right data on the right media; to reduce the Total Cost Of Ownership

Flash Memory Panel Members

Name	Title	Company	Email
Tom Heil	Senior Systems Architect Distinguished Engineer	Broadcom	tom.heil@broadcom.com
Gary Kotzur	Executive Director/Senior Distinguished Engineer	Dell	<u>Gary_Kotzur@dell.com</u>
Chris Petersen	Hardware Systems Architect	Facebook	<u>cpetersen@fb.com</u>
Don Faw	Principal Engineer, Platform Architect	Intel	donald.l.faw@intel.com
Ziv Serlin	Director System Architecture	E8 Storage	ziv@e8storage.com
Tim Emami	Technical Director	Network Appliance	Tim.Emami@netapp.com

Thank You!