

Securing the SSDs – NVMe Controller Encryption

Radjendirane Codandaramane Microsemi Corporation August 9th, 2016

Flash Memory Summit 2016 Santa Clara, CA

- Enterprise storage security needs
- Data-at-Rest encryption
- Encryption solution space
- Security features
- NVMe SSD example
- FIPS and design considerations

Microsemi

Power Matters."

Performance, Port Density, Power, Price

- Protection against path failures through RAID, High Availability
- Protection against data corruption through RAID, DIF
- Protection against data mishandling through encryption

- Data-in-Flight/Data-in-Transit Protection
- Data-at-Rest Protection
 - Instant Secure Erase

Server

Х

of Vulnerable Data

Storage Drivers	Information Attacks	Regulatory Compliance	
Information Sharing	Insiders	Industrial	
Consolidation	End of Life Disposal	Federal	
Outsourcing	Data Breaches	Local	
Increasing Amount	Multiple Threate	Increased Liability	

Microsemi

and

Penalties

Power Matters."

= Enterprise Data, Money, and Brand at Risk

Encryption Solution Space

Enterprise Storage Encryption Features

Performance

Must encrypt/decrypt data without impacting I/O performance

Cost-effective

• Affordable upgrade to existing storage installations

Flexibility

• Support for different block sizes, key granularities (drive, LUN, LBA etc.)

Reliability

- Must provide means to ensure that data was encrypted and decrypted properly
- Must ensure data protection

Standards-compliant

- Must meet the needs of applicable industry standards (PCI, HIPAA, etc.)
- FIPS 140–2, IEEE 1619
- TCG Enterprise, Opal, Opalite, Pyrite

Flash Memory NVMe SSD Encryption Example

- Data Encryption Key (DEK) or Range Key
 - Used to encrypt all data
 - Generated within the drive based on a TRNG

Microsemi

Power Matters."

- DEK is stored securely within the drive
- Authentication key (Range PIN):
 - Used to unlock the drive
 - Hash of this key is stored inside the drive

• At setup

The drive generates a random range key for each range (never leaves the drive)
Host generates a random 32B range PIN for each range and sends to the drive
The drive wraps range key with range PIN and drive ID and stores range key blob in the drive
At boot

Host sends 32B range PIN to the drive The drive verifies the range PIN If successful, then the drive is unlocked and ready

From key server

- NVMe is evolving to fabric topology and becoming scalable like SAS/ SATA SSDs
- NVMe JBOF and RAID are on the horizon!
- Controller-based encryption is media independent

Flash Memory Encryption Solution Comparison

Solution	Pros	Cons
Self Encrypting Drive (SED)	 Integrated key generation 	 Low security (keys and data stored in the drive) Limited vendors and compatibility
Controller-Based Encryption (CBE)	 Encrypt any HDD/SSD Cost-effective High security (keys and data are separated) Flexible key assignment (granularity of 1 key per HDD/SSD, LUN, LBA, I/O) 	Requires key manager

Flash Memory FIPS 140-2 Levels and Requirements Power Matters."

Category	Level 1	Level 2	Level 3	Level 4	
Cryptographic module	Cryptographic boundary definition				
Ports and interfaces	Interfaces definition		Data paths logically separate		
Roles, services and authentication	No auth.	Roles based	ID-based authentication		
FSM	Define operational states				
Physical security	Production	Tamper evidence	Tamper response	EFP/EFT	
Operational environment	Single user	EAL2 OS	EAL3 OS	EAL4 OS	
Key management	Plaintext manual entry		Encrypted manual entry		
EMI/EMC	FCC Class A		FCC Class B		
Self-Tests	Power-up and conditional tests				
Design assurance	CM system	Secure dist.	High-level lang.	Extensive doc.	
Mitigation of other attacks	Threats not covered by requirements				

Flash Memory

Design for FIPS Considerations

- NIST Known-Answer-Test (KAT) vectors
- Method to prove encryption engine is working
- Self-test
 - Power-up self-test and on-demand self-test
 - Resetting, rebooting, and power cycling are acceptable means for the ondemand initiation of power-up tests
 - Implement a method to invoke self-tests
- Error injection
 - Method to invoke negative test cases
 - After error injection, the encryption functionality is disabled
- Physical security
 - No access to critical security parameters through debug interfaces
 - Zeroization

- Data storage security in enterprises is now a necessity
- Data-at-Rest encryption is the easiest way to safeguard data
- PCIe/NVMe SSD encryption can be implemented inside or outside the drive (SED, CBE)
- Keep in mind the design considerations for FIPS from the beginning!

References and Resources

NIST: http://csrc.nist.gov/

- FIPS 197 AES Specification
- FIPS 140-2 Cryptographic Module Validation Program
- IEEE 1619: http://siswg.org/
 - 1619 Architecture for Encrypted Shared Storage Media (XTS-AES)

NVM Express: http://www.nvmexpress.org/

Trusted Computing Group: http://www.trustedcomputinggroup.org/

