

Guaranteeing enterprise-class availability in a flash environment

Phill Gilbert
HPE 3PAR WW Product Manager

Wenory What is enterprise-class?

Enterprise-class flash attributes

Optimization

Critical day-one architecture decisions that make the most of flash

Work with flash vendors to implement optimizations at the system level

Use these to increase the performance and endurance of flash media

Reliability

ARR of NAND flash is significantly lower compared to HDD

Rebuilds for SSD are faster so systems are degraded for less time; rebuilds place less pressure on SSDs

Failure modes for flash are different to HDDs

MTBF are greater for SSDs

Performance

Enterprises expect predictable performance

'Ring-fenced' performance for critical applications

Provide low-latency that flash makes possible

Increased performance (IOPS / bandwidth) to enable workload consolidations

Cost

Capacity efficiency technologies to reduce initial costs

Reduced system overheads reduces the cost of flash

Increased density reduces DC requirements

Lower power and cooling costs

Ease of use

Flash in an enterprise environment

User experience

Increased revenue

Consolidation

Predictability

Datacenter footprint

Power and cooling costs

Host licensing costs

Complexity

Reliability: the cost of downtime

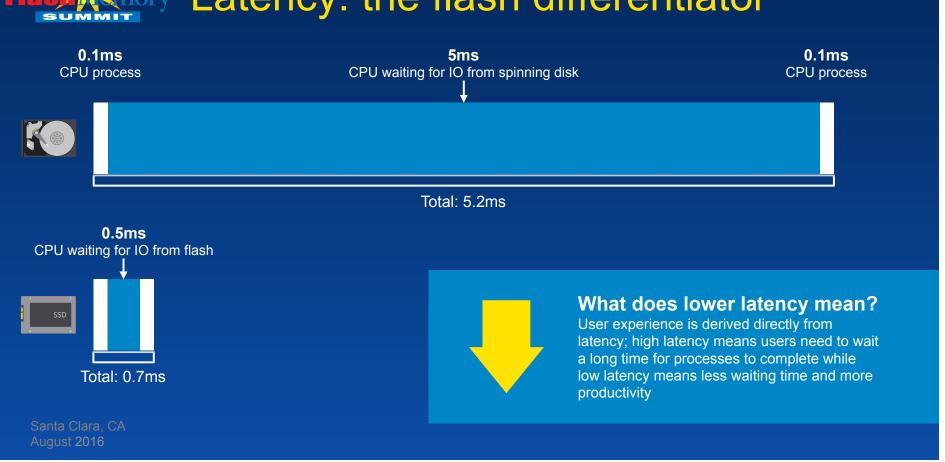
99.999%
5 minutes 15 seconds downtime per year

99.9999%

32 seconds downtime per year

The annual difference between 5x9s and 6x9s is 283 seconds

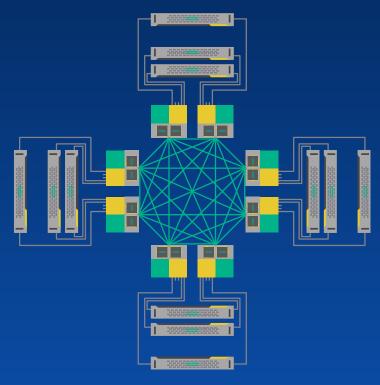
44,746 Items sold



Just 5 minutes of downtime from Google in August 2013 resulted in a 40% drop in local Internet traffic

In today's always-on environment, every second counts!

Latency: the flash differentiator


Flash-optimized architecture

Mesh Active Cluster

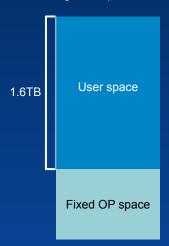
Active-Active cluster delivers sustainable performance even with high levels of capacity utilization

Hardware-acceleration

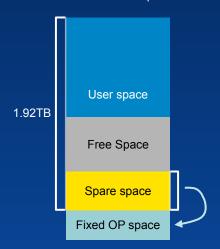
High-performance engine offloads CPU to boost performance and drives advanced data services

Fine Grained Virtualization

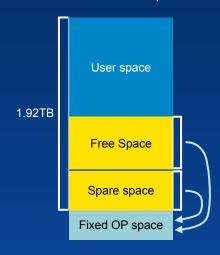
Three levels of storage virtualization to drive up capacity utilization and accelerate performance


System Wide Striping

Massively parallel striping of data across all internal resources ensures high, predictable service levels


A new approach to sparing

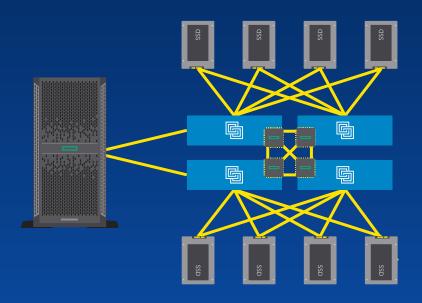
Traditional deployment High-OP space drive


Standard deployment uses drives with large amounts of OP space to provide performance and endurance at high cost

Adaptive Sparing HPE 3PAR Low-OP space drive

Adaptive Sparing gives the drive access to 3PAR spare space for overprovisioning, increasing endurance and performance

Adaptive Sparing 2.0 HPE 3PAR Low-OP space drive



Adaptive Sparing 2.0 works with Adaptive Sparing by also giving the drive access to free system space for overprovisioning

August 2016

Active/Active end-to-end

Active/Active host connections

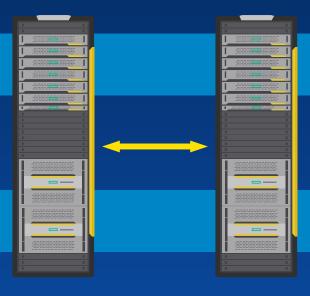
Truly active/active connectivity with no reliance on MPIO DSM or proprietary drivers and plugins

Mesh-active controller architecture

Ensures that all system resources are evenly balanced for optimal performance, drive wear and simplified management

Active/active SSD access

Each node in a node pair has active access to all drives behind the node pair to drive performance and improve efficiency


HPE 3PAR StoreServ Availability

Persistence Cache

Predictable, high performance in case of controller reboot/shutdown

Persistent Ports

High availability in event of switch/cable failure without host side MPIO interaction

Cage availability

Seamlessly protects against entire drive cage failure or power failure

Priority Optimization

Prevents noisy neighbor and guarantees performance to critical applications

Peer Persistence

Protect against datacenter failure with automated site failover without degradation and zero recovery time

Solid state and other non-volatile memory technologies have already massively disrupted the industry

Solid state technologies don't change the base requirements for availability, high performance doesn't eliminate resilience

Key differentiators include rich data services (data mobility, protection) and integration into other infrastructure components

Solid state technologies will continue to exist as tiers in most environments including sub-LUN tiering and server-side flash

HPE 3PAR StoreServ

HPE 3PAR 8000

Scales to over 1m IOPS 5.5PB usable capacity 2-4 node scalability Up to 480 SSDs 24 host ports

Santa Clara, CA August 2016

One OS

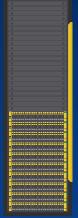
One interface

One feature set

Any workload set

Federated mobility

HPE 3PAR 20000


Scales to over 3m IOPS 12PB usable capacity 2-8 node scalability Up to 1024 SSDs 160 host ports

Enterprise-class data services

Persistent Checksum
Data consistency

Synchronous
Zero-second RPO

Asynchronous Periodic 5 min RPO

Asynchronous Streaming RPO in seconds

3-site replication Zero RPO, 3 data center

Express ProtectBackup integration

End-to-End Data Integrity

Complete set of replication options

Direct backup to diskto-disk appliance