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Agenda

1. Why do we want compression?
2. What algorithms exist? 
3. How should we choose an algorithm?
4. How does compression affect controller design?
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Why Do We Want Compression?

• NAND Flash technology has seen unprecedented 
technological innovation over the last few years 
• 1y/z nm, TLC, 3D, QLC

• Despite this, Flash remains a relatively expensive 
storage medium (compared to consumer HDD) 

• Data reduction techniques such as compression and 
deduplication offer a way to “close the gap” 

• Compression can bring additional performance benefits
Flash Memory Summit 2016
Santa Clara, CA 3



Compression Algorithms 

• Lempel-Ziv
• Huffman Coding
• Arithmetic Coding
• Adaptive Statistical Compression
• Context Mixing
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Lempel-Ziv Coding
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There is a lot of talk about Flash Memory at the Flash Memory Summit 

There is a lot of talk about Flash Memory at the (12,20) Summit 

Replace long matches of characters with 
(Length, Distance) back-pointers

Length=12 chars

Distance=20 chars
[Ziv & Lempel, 1977]

Lempel-Ziv coding underpins many compression algorithms widely in use today:
LZ4, LZO, GZIP

GZIP uses Lempel-Ziv together with a secondary compression technique…..



Huffman Coding
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Huffman Tree Variable Length Encoding

Input
Symbol

Output 
Code

A 001

B 1

C 000

D 01

[Huffman, 1952]

Frequent symbols are assigned 
short codes, infrequent symbols 
are assigned long codes



Compressor

Example: GZIP

Flash Memory Summit 2016
Santa Clara, CA 7

LZ Encoding

Build Huffman Tree

Huffman
Encoding 

Uncompressed Input Data

Compressed Data Header

A header is added to the compressed 
data block containing a description of 
the Huffman tree that was used to 
encode the data 

The decompressor must first re-build 
the Huffman tree from the header and 
then un-do the two encoding steps 

e.g. 32KB



Arithmetic Coding 
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Whole sequence of input symbols is encoded as an interval

One key advantage of Arithmetic coding over Huffman coding: 
the data model can change during encoding 

A B C D

BA BB BC BD

Histogram that can be 
extracted from input data [Witten, Neal, Cleary 1987]



Compressor

Adaptive Statistical Compression
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Exact same model is generated in comp and decomp. There is no need to store model in header. 

Unlike GZIP, we only need 1 pass through the data. 



Adaptive Data Model 

Context Mixing 
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Mix together the predictions of 
an ensemble of context models

We can learn which models are 
good and which models are bad 
and weight accordingly 

Examples of CM algorithms:
PPM [Cleary & Witten, 1988] 
PAQ [Mahoney, 2005]

In PAQ the mixer is implemented 
as a neural network. This 
algorithm won the Hutter Prize.



Which is the best algorithm?
• The best choice of algorithm varies depending on application
• Let us define compression ratio as follows:

CR = {Uncompressed size of data}  / {Compressed size of data}
• CR=2 would results in a 2x increase in the capacity of the system 

that can be exposed to the user 
• Key trade-offs involved in selecting an algorithm:
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Compression Ratio Vs.
Compression Bandwidth 
Decompression Bandwidth
Memory Usage

Most critical 
issues for 
Flash-based 
storage?? 



Exploring the Algorithm Space 
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Squash 
compression 
benchmark

IBM data corpus

PAQ algorithm (Context Mixing)
Huge CR but very slow!

GZIP (LZ+Huffman)
Good CR, decent speed LZ4 (LZ-only)

Low CR, 
incredible speed

Brotli (LZ+Huffman+2nd order context) 
[Alakuijala, Szabadka, 2016]

Pareto Frontier



Flash-specific Considerations

• Integration of compression can have a profound impact 
on the design of a Flash controller 

• Compression can also change performance 
• We will consider two interesting examples:

1. Write amplification
2. Data placement
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Write Amplification (CR=1)
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WA =  {Total Physical Data Written} / {Total Logical Data Written}

4KB 
logical 
page

10 physical pages / block

16KB 
physical
page

# of logical pages in block:  40
# of    valid logical pages:    30
# of invalid logical pages:    10 (1/4 of block) 
Logical host writes:              40 * 4KB = 160KB
Physical host writes:            40 * 4KB = 160KB
Physical relocation writes:   30 * 4KB = 120KB

WA  = (160KB+120KB)/160KB
= 1.75



Write Amplification (CR=2)
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WA =  {Total Physical Data Written} / {Total Logical Data Written}

2KB 
logical 
page

10 physical pages / block

16KB 
physical
page

# of logical pages in block:  80
# of    valid logical pages:    60
# of invalid logical pages:    20 (1/4 of block) 
Logical host writes:              80 * 4KB = 320KB
Physical host writes:            80 * 2KB = 160KB
Physical relocation writes:   60 * 2KB = 120KB

WA  = (160KB+120KB)/320KB
= 0.875

Compression leads to a reduction in WA



Data Placement
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LP[0] LP[1] LP[2] LP[3]

Logical 
Page
Index

Physical 
Page 
Index

Offset

0 p 0KB

1 p 4KB

2 p 8KB

3 p 12KB

Logical 
Page
Index

Physical 
Page 
Index

Offset Length

0 p 0KB 2KB

1 p 2KB 2KB

2 p 4KB 4KB

3 p 8KB 2KB

4 p 10KB 2KB

5 p 12KB 2KB

6 p,(p+1) 14KB 4KB

LP[0] LP[2]LP[1]

16KB Physical Page 16KB Physical Page

LP[3] LP[4] LP[5] LP[6]

Logical pages can straddle physical pages!



Conclusions

• Compression has significant benefits for Flash-based systems:
q Increased logical capacity 
q Decreased write amplification 

• However, it makes controller design more challenging:
q Increased meta-data requirements
q Increased complexity of Logical-to-Physical mapping

• Choose the right compression algorithm for your system:
q What compression/decompression bandwidth is required?
q How much memory is available?  

Flash Memory Summit 2016
Santa Clara, CA 17


