
Compression

Making Flash (Even) Cheaper

Thomas Parnell, IBM Research - Zurich

Flash Memory Summit 2016
Santa Clara, CA 1

Agenda

1. Why do we want compression?
2. What algorithms exist?
3. How should we choose an algorithm?
4. How does compression affect controller design?

Flash Memory Summit 2016
Santa Clara, CA 2

Why Do We Want Compression?

• NAND Flash technology has seen unprecedented
technological innovation over the last few years
• 1y/z nm, TLC, 3D, QLC

• Despite this, Flash remains a relatively expensive
storage medium (compared to consumer HDD)

• Data reduction techniques such as compression and
deduplication offer a way to “close the gap”

• Compression can bring additional performance benefits
Flash Memory Summit 2016
Santa Clara, CA 3

Compression Algorithms

• Lempel-Ziv
• Huffman Coding
• Arithmetic Coding
• Adaptive Statistical Compression
• Context Mixing

Flash Memory Summit 2016
Santa Clara, CA 4

Lempel-Ziv Coding

Flash Memory Summit 2016
Santa Clara, CA 5

There is a lot of talk about Flash Memory at the Flash Memory Summit

There is a lot of talk about Flash Memory at the (12,20) Summit

Replace long matches of characters with
(Length, Distance) back-pointers

Length=12 chars

Distance=20 chars
[Ziv & Lempel, 1977]

Lempel-Ziv coding underpins many compression algorithms widely in use today:
LZ4, LZO, GZIP

GZIP uses Lempel-Ziv together with a secondary compression technique…..

Huffman Coding

Flash Memory Summit 2016
Santa Clara, CA 6

1

4

1

2

Sy
m

bo
l C

ou
nt

A B C D

Symbol Index

Data Model

Histogram that can be
extracted from input data

1 0

1 0

1 0

B

D

A C

Huffman Tree Variable Length Encoding

Input
Symbol

Output
Code

A 001

B 1

C 000

D 01

[Huffman, 1952]

Frequent symbols are assigned
short codes, infrequent symbols
are assigned long codes

Compressor

Example: GZIP

Flash Memory Summit 2016
Santa Clara, CA 7

LZ Encoding

Build Huffman Tree

Huffman
Encoding

Uncompressed Input Data

Compressed Data Header

A header is added to the compressed
data block containing a description of
the Huffman tree that was used to
encode the data

The decompressor must first re-build
the Huffman tree from the header and
then un-do the two encoding steps

e.g. 32KB

Arithmetic Coding

Flash Memory Summit 2016
Santa Clara, CA 8

1

4

1

2

Sy
m

bo
l C

ou
nt

A B C D

Symbol Index

Data Model

0 1/8 5/8 6/8 1

A CB D

A CB D

2/16 3/16 7/16 8/16 10/16

Whole sequence of input symbols is encoded as an interval

One key advantage of Arithmetic coding over Huffman coding:
the data model can change during encoding

A B C D

BA BB BC BD

Histogram that can be
extracted from input data [Witten, Neal, Cleary 1987]

Compressor

Adaptive Statistical Compression

Flash Memory Summit 2016
Santa Clara, CA 9

Adaptive
Data Model

Arithmetic
Encoder

Delay

Pr 𝑥$|𝑥$&', … , 𝑥'

𝑥$

𝑥$&'

Decompressor

Adaptive
Data Model

Arithmetic
Decoder

Delay

𝑥$

Pr 𝑥$|𝑥$&', … , 𝑥'

𝑥$&'

101011000

Exact same model is generated in comp and decomp. There is no need to store model in header.

Unlike GZIP, we only need 1 pass through the data.

Adaptive Data Model

Context Mixing

Flash Memory Summit 2016
Santa Clara, CA 10

Context
Model 1

Context
Model 2

Context
Model M

Pr 𝑥$|𝑥$&'

Mixer
Pr 𝑥$|𝑥$&', 𝑥$&*

Pr 𝑥$|𝑥$&', 𝑥$&*, … , 𝑥$&+

𝑥$&' Pr 𝑥$|𝑥$&', … , 𝑥'

Mix together the predictions of
an ensemble of context models

We can learn which models are
good and which models are bad
and weight accordingly

Examples of CM algorithms:
PPM [Cleary & Witten, 1988]
PAQ [Mahoney, 2005]

In PAQ the mixer is implemented
as a neural network. This
algorithm won the Hutter Prize.

Which is the best algorithm?
• The best choice of algorithm varies depending on application
• Let us define compression ratio as follows:

CR = {Uncompressed size of data} / {Compressed size of data}
• CR=2 would results in a 2x increase in the capacity of the system

that can be exposed to the user
• Key trade-offs involved in selecting an algorithm:

Flash Memory Summit 2016
Santa Clara, CA 11

Compression Ratio Vs.
Compression Bandwidth
Decompression Bandwidth
Memory Usage

Most critical
issues for
Flash-based
storage??

Exploring the Algorithm Space

12
Flash Memory Summit 2016
Santa Clara, CA

Squash
compression
benchmark

IBM data corpus

PAQ algorithm (Context Mixing)
Huge CR but very slow!

GZIP (LZ+Huffman)
Good CR, decent speed LZ4 (LZ-only)

Low CR,
incredible speed

Brotli (LZ+Huffman+2nd order context)
[Alakuijala, Szabadka, 2016]

Pareto Frontier

Flash-specific Considerations

• Integration of compression can have a profound impact
on the design of a Flash controller

• Compression can also change performance
• We will consider two interesting examples:

1. Write amplification
2. Data placement

Flash Memory Summit 2016
Santa Clara, CA 13

Write Amplification (CR=1)

Flash Memory Summit 2016
Santa Clara, CA 14

WA = {Total Physical Data Written} / {Total Logical Data Written}

4KB
logical
page

10 physical pages / block

16KB
physical
page

of logical pages in block: 40
of valid logical pages: 30
of invalid logical pages: 10 (1/4 of block)
Logical host writes: 40 * 4KB = 160KB
Physical host writes: 40 * 4KB = 160KB
Physical relocation writes: 30 * 4KB = 120KB

WA = (160KB+120KB)/160KB
= 1.75

Write Amplification (CR=2)

Flash Memory Summit 2016
Santa Clara, CA 15

WA = {Total Physical Data Written} / {Total Logical Data Written}

2KB
logical
page

10 physical pages / block

16KB
physical
page

of logical pages in block: 80
of valid logical pages: 60
of invalid logical pages: 20 (1/4 of block)
Logical host writes: 80 * 4KB = 320KB
Physical host writes: 80 * 2KB = 160KB
Physical relocation writes: 60 * 2KB = 120KB

WA = (160KB+120KB)/320KB
= 0.875

Compression leads to a reduction in WA

Data Placement

Flash Memory Summit 2016
Santa Clara, CA 16

LP[0] LP[1] LP[2] LP[3]

Logical
Page
Index

Physical
Page
Index

Offset

0 p 0KB

1 p 4KB

2 p 8KB

3 p 12KB

Logical
Page
Index

Physical
Page
Index

Offset Length

0 p 0KB 2KB

1 p 2KB 2KB

2 p 4KB 4KB

3 p 8KB 2KB

4 p 10KB 2KB

5 p 12KB 2KB

6 p,(p+1) 14KB 4KB

LP[0] LP[2]LP[1]

16KB Physical Page 16KB Physical Page

LP[3] LP[4] LP[5] LP[6]

Logical pages can straddle physical pages!

Conclusions

• Compression has significant benefits for Flash-based systems:
q Increased logical capacity
q Decreased write amplification

• However, it makes controller design more challenging:
q Increased meta-data requirements
q Increased complexity of Logical-to-Physical mapping

• Choose the right compression algorithm for your system:
q What compression/decompression bandwidth is required?
q How much memory is available?

Flash Memory Summit 2016
Santa Clara, CA 17

