

Online Flash Channel Modeling and Its Applications

Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, Onur Mutlu Carnegie Mellon University, Seagate Technology

Flash as a Communication Channel

Motivation: Understanding flash channel can help minimize errors through the channel, or tolerate more errors efficiently

Prior Works on Distribution Models

Design time analysis

- Offline threshold voltage shift analysis [Cai+ DATE '13]
- Offline RBER analysis [Parnell+ GLOBECOM '14]
- Design time optimization
 - Read reference voltage optimization [Papandreou+ GLSVLSI '14]
 - ECC soft information optimization [Dong+ TCS '13]
- Can't be run online none of these are both accurate and easy-to-compute

Why Online Modeling?

4

- Flash controllers becoming more powerful
- Can use idle cycles for background optimization
- Can adapt to real-world variation

Goal

- Create online flash channel model
 - Helps with understanding flash channel
 - Enables runtime optimizations
 - Must be accurate and easy to compute
- Develop model-driven applications
 Work to reduce or tolerate flash errors

Outline

- What do we model?
 Program variation noise
 Program/erase cycling noise
 How do we model it?
 Static flash channel model → program variation
 - Dynamic flash channel model \rightarrow P/E cycling noise
- Applications of Online Flash Channel Model

Program Variation Noise

Program/Erase Cycling Noise

Outline

- What do we model?
 Program variation noise
 Program/erase cycling noise
- How do we model it?
 - Static flash channel model \rightarrow program variation
 - Dynamic flash channel model \rightarrow P/E cycling noise
- Applications of Online Flash Channel Model

Static Flash Channel Model

- Program variation noise
- Threshold voltage distribution @ N P/E cycles
- Program variation noise should be normally distributed → Why don't we use a Gaussian model?

Gaussian Model Isn't Accurate Enough

Student's t-Distribution

- Real distribution has larger tail than Gaussian
- Student's t has degree of freedom: v
 - \Box v $\rightarrow \infty$: t-distribution \rightarrow Gaussian
 - v→1: largest tail

Image source: https://en.wikipedia.org/wiki/Student%27s_t-distribution

Modifications to Student's t-Distribution

- Generalize distribution
 - Allows for shifting and scaling

$$\Box x \rightarrow Z = \frac{x - \mu}{\sigma}$$

- Support asymmetric tail sizes: v $\rightarrow \alpha$ (right), β(left)
- Superposition of two distributions
 - Cause: Two-step programming errors

Characterization Methodology

USB Daughter Board

[Cai+, FCCM 2011, DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, DSN 2015, HPCA 2015]

Cai et al., FPGA-based Solid-State Drive prototyping platform, FCCM 2011.

Static Modeling Results

Our model (curve) vs. characterized (circle) @ 20K P/E
 cycle 10⁰

More related results in the paper, including:

- Static model fit at 2.5K, 5K, 10K P/E cycles
- Modeling complexity analysis

0 0000

 Comparison to other flash channel models (Gaussian-based and normal-Laplace-based)

"Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory", to appear in IEEE JSAC Special Issue, 2016

100

ത്തിൽന

alized

300

Outline

- What do we model?
 Program variation noise
 Program/erase cycling noise
- How do we model it?
 - Static flash channel model \rightarrow program variation
 - Dynamic flash channel model \rightarrow P/E cycling noise
- Applications of Online Flash Channel Model

Dynamic Flash Channel Model

- P/E cycling noise
- Threshold voltage distribution shift
- Dynamic model modifies static model's parameters: mean, variance, left/right tail_program error probability
- Power-law model

Flash Channel Model Results (Dynamic)

More related results in the paper, including:

- Standard deviation fit
- Tail size fit
- Program error probability fit

Flash Channel Model Results (Dynamic)

Using N prior characterizations to predict flash channel @ 20K P/E cycle

Outline

□ What do we model? Program variation noise Program/erase cycling noise □ How do we model it? Student's t-based model \rightarrow program variation **\square** Power law-based model \rightarrow P/E cycling noise Applications of Online Flash Channel Model Results

Optimal Read Reference Voltage Prediction

- Improves flash lifetime
 - 48.9% longer flash lifetime
- Minimizes number of read-retries
- Faster soft ECC decoding

Expected Lifetime Estimation

- Safely go beyond manufacturer-specified lifetime
 - 69.9% higher flash lifetime usage

Other Applications of Our Model

Raw Bit Error Rate Estimation
 Predict ECC margin, apply variable ECC strength
 Soft Information Estimation for LDPC Codes
 Improves coding efficiency

Outline

- What do we model?
 Program variation noise
 Program/erase cycling noise
 How do we model it?
 Student's t-based model → program variation
 - Power law-based model \rightarrow P/E cycling noise
- Applications of Online Flash Channel Model

Conclusion

- Goal: Develop an online flash channel model, and utilize this model to improve flash reliability
- Static flash channel model
 - 0.68% modeling error
 - Amortized read latency overhead <50 ns</p>
- Dynamic flash channel model
 - 2.72% modeling error
 - Using only 4 data points (even lower overhead)
- Example applications of online model
 - 48.9% longer flash lifetime, or 69.9% higher flash usage
 - Hopefully inspires other reliability/performance improving techniques to use our online model

Yixin Luo <u>yixinluo@cs.cmu.edu</u> http://www.cs.cmu.edu/~yixinluo/

This presentation is based on a paper to appear in IEEE JSAC Special Issue, 2016: <u>"Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory"</u>, Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, Onur Mutlu

Our Other FMS 2016 Talks

27	
	<u>"Software-Transparent Crash Consistency for Persistent</u>
	Memory"
	Onur Mutlu (ETH Zurich & CMU) August 8 @ 11:40am
	PreConference Seminar C: Persistent Memory
	"A Large-Scale Study of Flash Memory Errors in the Field"
	Onur Mutlu (ETH Zurich & CMU) August 10 @ 3:50pm
	Study of flash-based SSD errors in Facebook data centers over the course of 4 years
	First large-scale field study of flash memory reliability
	Forum F-22: SSD Testing (Testing Track)
	WARM: Improving NAND Flash Memory Lifetime with
	Write-hotness Aware Retention Management"

Saugata Ghose (CMU Researcher) August 10 @ 5:45pm

Forum C-22: SSD Concepts (SSDs Track)