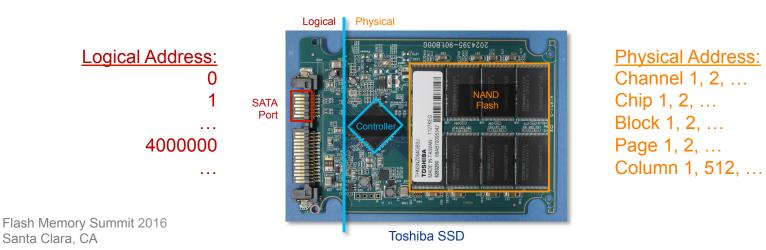


Comparison of NAND Flash Functionality with Internal Probing and Waveform Analysis

Tarek Alhajj, Engineering Solutions Architect TechInsights Inc.

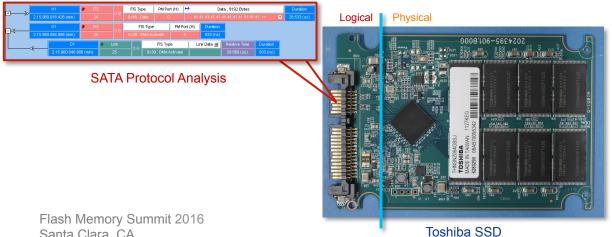
- NAND flash SSD overview and logical vs. physical addressing
- Important test and analysis points
- NAND flash internal waveform analysis
 - Jet-etching and probing
 - Internal waveforms and states
- SSD controller to NAND flash interface
 - Interposing for testing
 - Standards (ONFI, Toggle) and customizations
- VNAND

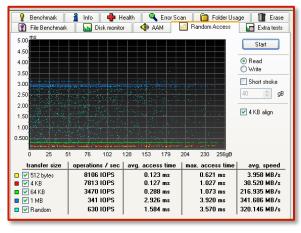

NAND flash SSD overview and logical vs. physical addressing

- Important test and analysis points
- NAND flash internal waveform analysis
 - Jet-etching and probing
 - Internal waveforms and states
- SSD controller to NAND flash interface
 - Interposing for testing
 - Standards (ONFI, Toggle) and customizations
- VNAND

- A port for host requests, such as SATA, USB, PCIe, eMMC, UFS, etc.
- Controller and many NAND flash memory devices
- Controller translates host requests to NAND flash memory requests
- The host cannot control the physical addressing (i.e., NAND flash).

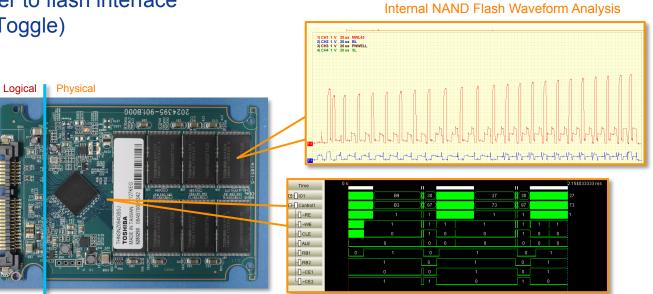
NAND flash SSD overview and logical vs. physical addressing


Important test and analysis points


- NAND flash internal waveform analysis
 - Jet-etching and probing
 - Internal waveforms and states
- SSD controller to NAND flash interface
 - Interposing for testing
 - Standards (ONFI, Toggle) and customizations
- VNAND

Important Test and Analysis Points

- Host side testing and analysis can be done
 - Simple host benchmarking and testing SW
 - Protocol analyzer (e.g., SATA analyzer)
 - Limited (access rates, speculation, etc.)


SATA I/F Benchmarking

Santa Clara, CA

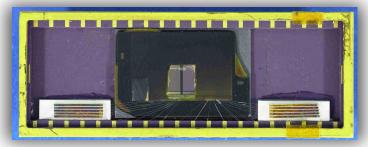
Important Test and Analysis Points

- Physical side has some interesting points for test and analysis
 - Internal flash operations (e.g., WL, BL, SL, etc.)
 - Controller to flash interface (ONFI, Toggle)

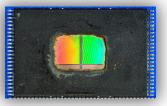
Flash Memory Summit 2016 Santa Clara, CA

Toshiba SSD

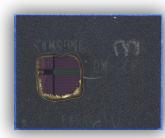
NAND Flash Interface Signals

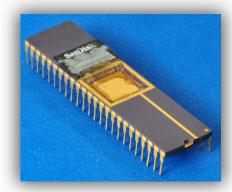


- NAND flash SSD overview and logical vs. physical addressing
- Important test and analysis points
- NAND flash internal waveform analysis
 - Jet-etching and probing
 - Internal waveforms and states
- SSD controller to NAND flash interface
 - Interposing for testing
 - Standards (ONFI, Toggle) and customizations
- VNAND


- Jet etch to expose die for FIB pad placement for IC probing
- Challenges can include:
 - packaging obstructions
 - BGA to programmer translation
 - device repackaging (e.g., SD card) for direct NAND flash connectivity to programmer.

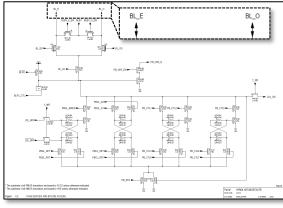
Re-wiring NAND flash in SD card



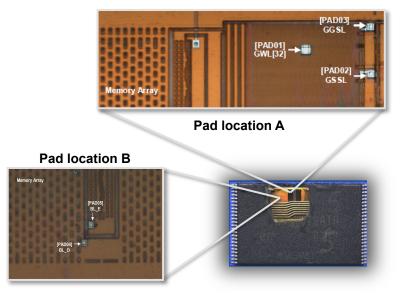

Cut lead frame

Bottom side

BGA

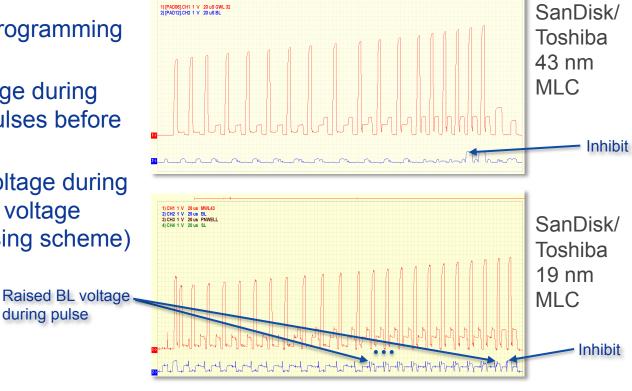


Re-wiring NAND flash in SD card

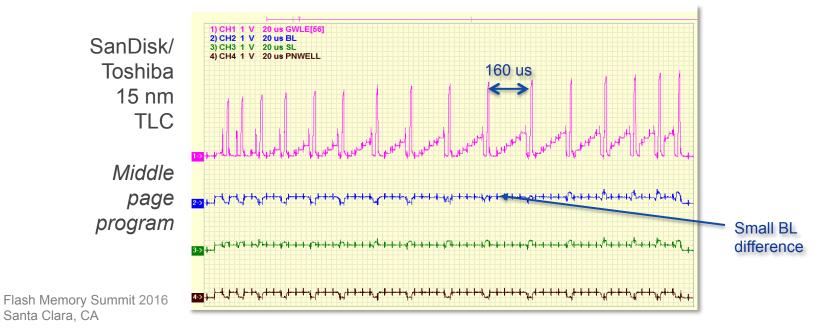


Flash Memory NAND Flash Waveform Analysis

- FIB pad placement challenges with shrinking NAND flash:
 - Requires initial circuit extraction from the NAND flash IC
 - Metallization thickness, M1 vs M2 for FIB connection
 - BL pitch to get BL signals!

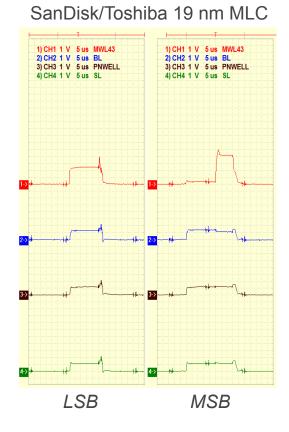

Circuit Extraction

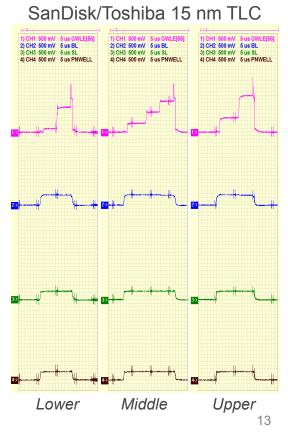
NAND Flash Waveform Analysis Memory


- Fine tuning of programming during ISPP
- Raised BL voltage during programming pulses before inhibit
- Increased BL voltage during verify and small voltage difference (sensing scheme)

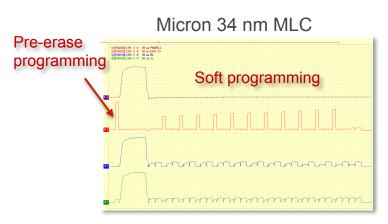
during pulse

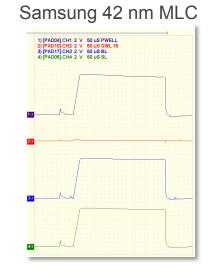
- TLC verify extends programming time (~2x pulse-to-pulse)
- Sensing during verification produces small BL differences

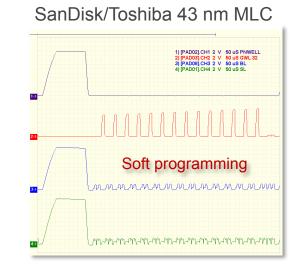




NAND Flash Waveform Analysis

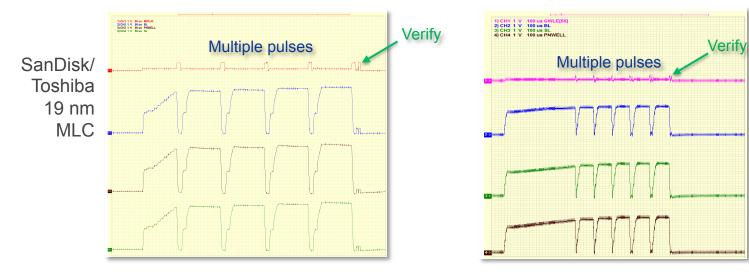

- Reading is simpler in MLC vs. TLC
- TLC requires many more read voltages





- Variations in erase algorithms
- Single large pulse and programming

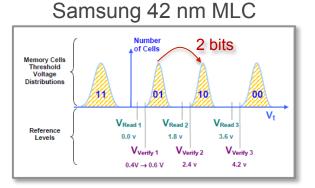
SanDisk/

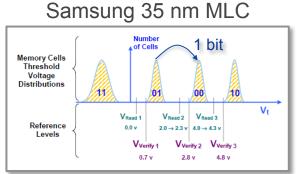

Toshiba

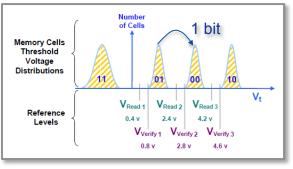
15 nm

TLC

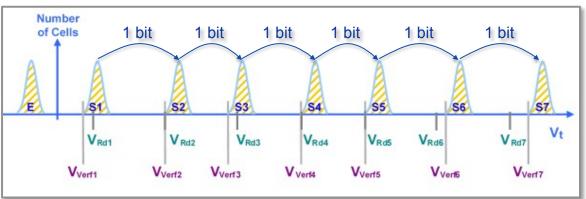
Flash Memory NAND Flash Waveform Analysis


- Variations in erase algorithms
- Multiple pulses and verification



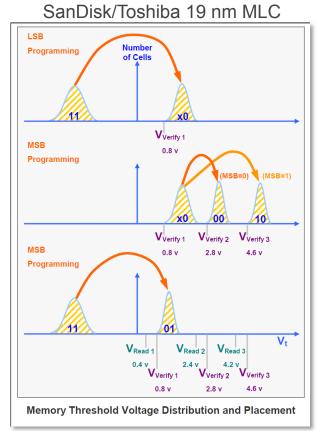


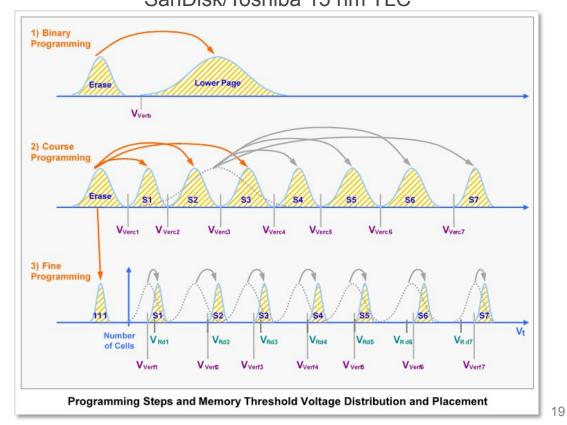
- 2-bit change between states implemented across the industry around the 5x/4x nm node
- Changed to single bit change from state to state



SanDisk/Toshiba 19 nm MLC

- 2-bit change between states implemented across the industry around the 5x/4x nm node
- Changed to single bit change from state to state including TLC

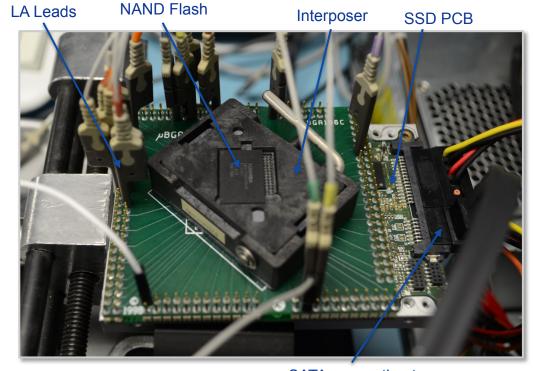




- Simpler programming for 2 bits/cell
- LSB page and MSB page can be programmed at different times (page addressing)

SanDisk/Toshiba 15 nm TLC

 TLC devices can require all 3 pages of data together (WL addressing), multiple times



- NAND flash SSD overview and logical vs. physical addressing
- Important test and analysis points
- NAND flash internal waveform analysis
 - Jet-etching and probing
 - Internal waveforms and states
- SSD controller to NAND flash interface
 - Interposing for testing
 - Standards (ONFI, Toggle) and customizations
- VNAND

Flash Memory Controller to NAND Flash Analysis

- Simple clip-on interposers for TSOP-48 NAND flash
- BGA packages are more complex
- Case-by-case: many different standard pin-outs
- Can also be non-standard pin-out; would need to first reverse engineer pin-outs

Flash Memory Summit 2016 Santa Clara, CA

*Testing and analysis of HGST SATA SSD

SATA connection to Protocol Analyzer and PC 21

Memory Controller to NAND Flash Analysis

- ONFI and JEDEC Toggle NAND Standards
- Customizations:
 - Raw NAND controllers
 - BGA layouts
 - Command sets
- Example of custom commands, SSD Boot-up:

. . .

- 0x70 Read Status
- **0xEF** Set Features
- **0xC3** Vendor Specific Command
- 0x28 Vendor Specific Command
- **0xE7** Vendor Specific Command
- 0x55 Vendor Specific Command

Flash Memory Summit 2016 Santa Clara, CA

*Testing and analysis of HGST SATA SSD

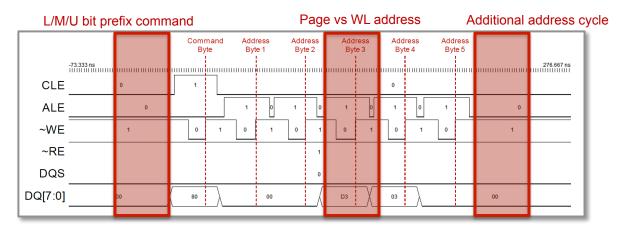
Туре	Opcode						
Standard Command Set	00h, 05h - 06h, 10h - 11h, 15h, 30h - 32h, 35h, 3Fh, 60h, 70h,						
	78h, 80h – 81h, 85h, 90h, D0h – D1h, D4h – D5h, D9h, E0h –						
	E2h, ECh – EFh, F1h – F2h, F9h, FAh, FCh, FFh						
Vendor Specific	01h – 04h, 07h – 0Ah, 0Ch – 0Fh <mark>, 13h, 16h –</mark> 17h, 19h – 1Ah,						
	1Dh – 2Fh, 33h – 34h, 36h – 3Eh, 40h – 5Fh, 61h, 65h – 6Fh,						
	71h – 75h, 77h, 79h – 7Fh, 84h, 87 h – 8Dh, 8 Fh, 91h – CFh,						
	D2h - D3h, D6h - D8h, DAh - DFh, E3h - EBh, F0h, F3h - F8h,						
	FBh, FD – FEh						
Reserved	0Bh, 12h, 14h, 18h, 1Bh - 1Ch, 62h - 64h, 76h, 82h - 83h, 86h,						
	8Eh						

 Table 91
 Opcode Reservations

 Source:
 Open NAND Flash Interface Specification, Rev 4.0

Bus/Signal	2.70669198833 s 2.70669208833 s 2.70669218833 s
⊞ <mark>-</mark> DQ_1	00 55
⊡ Control	73 68 6A 68 63X
VVE_1_n	1 0
[RE_1_n	
ALE_1	
	0 1
	1 0
DQS_1_t	
L_ R/B0_1_n	

- Addressing dependent on NAND flash device
- Example typical 5 cycle addressing with column, page, block/ plane (SanDisk SSD):


Address Cycle	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]
1	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
2			CA13	CA12	CA11	CA10	CA9	CA8
3	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
4	BA6	BA5	BA4	BA3	BA2	BA1	BA0	PL
5					BA10	BA9	BA8	BA7

Page address

- TLC and 3D NAND flash devices can greatly disrupt this
 - Page vs. WL + L/M/U bit command prefix
 - More address cycles will be needed
 - Locations of changes relative to standard addressing signals:

Memory Controller to NAND Flash Analysis

- Logical blocking with multi-plane operations is the usual industry approach
- Reduced signalling with Status Check commands instead of Ready/Busy lines
- Example controller to NAND flash transactions excerpt (SanDisk SSD):

	Sample Time				Ad	dress Cy	cles							
Sample #	Start	End	Cmd	1	2	3	4	5	Command	Plane	Block	Page	Column	Data
28	20.000 ns	804.596706667 ms	70						Status check * 4					E0 E0
36	804.619170000 ms	804.689361667 ms	80	00	00	60	84	00	Program	0	66	96	0	1D AD 92 57 A8 64
17724	804.689420000 ms	804.689420000 ms	11						Data end					
17729	804.689601667 ms	804.689833333 ms	70						Status check					80 80
17736	804.690050000 ms	804.690281667 ms	70						Status check					E0 E0
17744	804.690520000 ms	804.757640000 ms	81	00	00	60	85	00	Program: multi-plane	1	66	96	0	60 9D 83 48 DC 4E
35433	804.757698333 ms	804.757698333 ms	10						Data end					
36733	804.758840000 ms	804.833320000 ms	70						Status check * 4993					80 80
77526	807.046306667 ms	9.680669426667 s	70						Status check * 270					E0 E0

- Industry preferences for certain commands, addressing, wear leveling, garbage collection, disturb management, etc. will be disrupted with TLC and 3D NAND
- New industry best practices going forward TBD

- NAND flash SSD overview and logical vs. physical addressing
- Important test and analysis points
- NAND flash internal waveform analysis
 - Jet-etching and probing
 - Internal waveforms and states
- SSD controller to NAND flash interface
 - Interposing for testing
 - Standards (ONFI, Toggle) and customizations

- 3D array and periphery configurations
 - Side-by-side
 - Stacked array over circuitry
 - Other future considerations (TSV)
- NAND flash standards
 - Pin-outs
 - Addressing
 - Control

Thank you

For more information, go to <u>TechInsights.com</u>