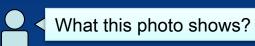


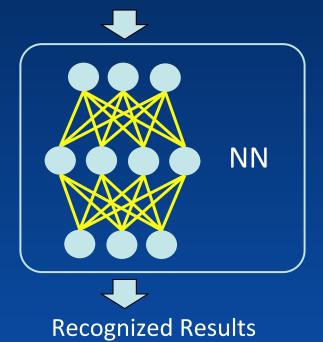
Novel Recognition System using XP-ReRAM


Haruhiko Terada
Amigo Tsutsui
Sony Semiconductor Solutions Corp.

Motivation

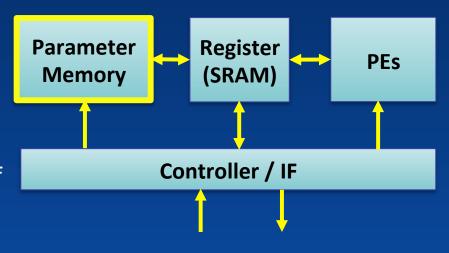
- Deep Learning enables chip to recognize everything!
- Which memory device is good for DL?

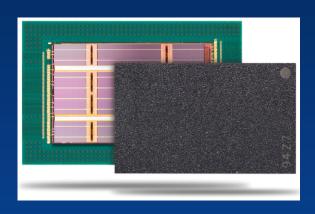
A tortoise-shell cat watching a red betta fish in a glass jar.



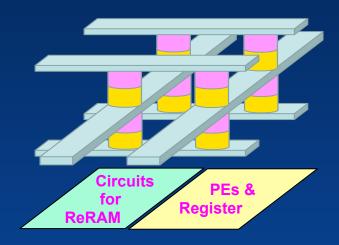
How DL Recognition works

- Neural Network discovers what inputs mean
- NN have lots of parameters
- To store parameters and process NN efficiently, special hardware is required


Image, Sound, Text ...

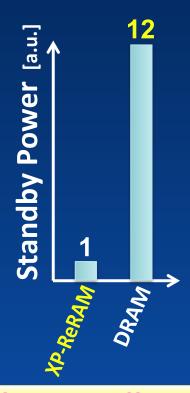

Expected Parameter Memory

- Capacity >1GB
- Read >1GB/sec
 - For real-time recognition
- Non-volatility
 - Keep parameters while power-off
 - ReRAM is simpler solution than DRAM + Flash



Achievement and Perspective

- 1T1R-ReRAM (Sony-Micron, 2014)
 - 2GB Capacity by 6F² cell design
 - 1GB/sec Read Bandwidth


- XP-ReRAM
 - More GB/\$ by 4F² cell & multi-deck
 - More BW/\$ by Circuits under Array
 - Less Energy by Embedded PEs

Comparison

XP-ReRAM significantly improves area & power efficiency

Santa Clara, Ca August 2016

- DL Recognition requires GB, GB/sec Read and non-volatility
- Our ReRAM achieved all those requirements
- XP-ReRAM contributes further small die area and low power

Thank you!

For questions, please contact

Haruhiko Terada haruhiko.terada@jp.sony.com