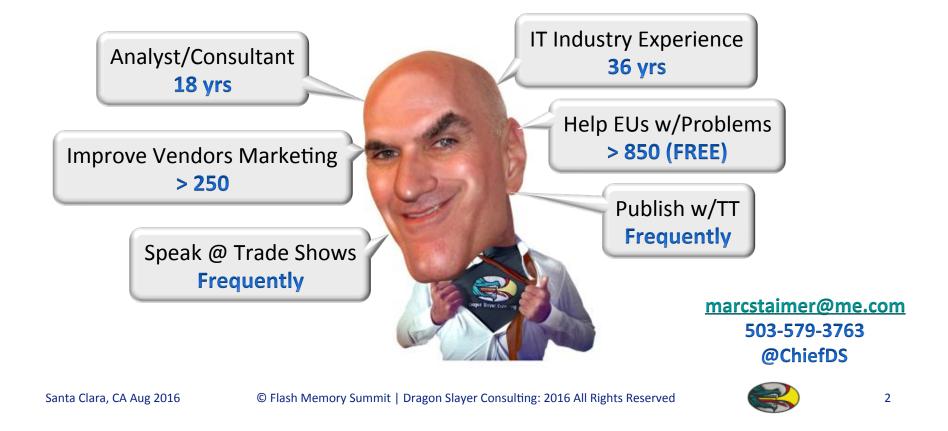


Why Flash Should Be Used For Every Workload



Even Secondary Ones 9 August 2016

Flash Memory Dragon Slayer Consulting – Marc Staimer CDS

Flash vs. HDD Myths & Facts

- Performance Analysis
- Technical Analysis
- Financial Analysis
- Business Case
- Conclusions
- ♦ Q & A

Santa Clara, CA Aug 2016

© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

Flash Memory Flash vs. HDD Myths & Facts

Myths

- ♦ HDDs are more reliable
- ♦ HDDs last longer
- ♦ All Flash are alike
- HDDs are cheaper
- Can't cost justify Flash
- HDD performance good enough
- Infrastructure costs =

♦ False

♦ False

- Completely untrue
- In most cases...not true
- ♦ Untrue
- ♦ Usually not
- Nope

There's no comparison

♦ Flash up to 1000x > than fastest HDD

Santa Clara, CA Aug 2016

© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

Performance	HDD	Flash
Read Latency	~ 2 to 8.5 ms	~ 115 μs
 Random Read IOPS	~ 200 - 400	~ 99,000
Sequential Reads	~ 160 to 250MBps	~ 540MBps
Random Write IOPS	~ 150 - 300	~ 18,000
Sequential Writes	~ 120 to 200MBps	~ 500MBps

Santa Clara, CA Aug 2016

© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

- ♦ HDD vs. "wear-life" (PE-Cycles) of Flash
- ♦ HDDs also have a wear-life
- Common measure DWPD
 - Complete drive writes/day 3-5 yr. warranty
- SSDs & HDDs both state their DWPDs
 - ♦ HDDs on avg. coming in lighter than SSDs

Reliability	HDD	Flash
MBTF	Rated @ ~ 2M hrs	Rated @ ~ 2.5M hrs.
Real World MTBF	Much < 100K hrs	~ 1M hrs
Failure types	Entire drive	Mostly write blocks
UBER	SAS 10 ¹⁶	SAS 10 ¹⁷ to 10 ¹⁸
UDEN	SATA 10 ¹⁵	SATA 10 ¹⁷
RAID	٧	٧
Wide-stripe RAID	٧	٧
МСМ	٧	٧
Erasure Codes	٧	V

Santa Clara, CA Aug 2016

- Torn/lost/misplaced writes HDD controller misses
- Doesn't inform RAID controller
- Parity pollution locks in no correction possible
- ♦ 10x > on SATA vs SAS
 - ♦ SAS costs more

Santa Clara, CA Aug 2016

© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

HDD Unrecoverable Bit Errors

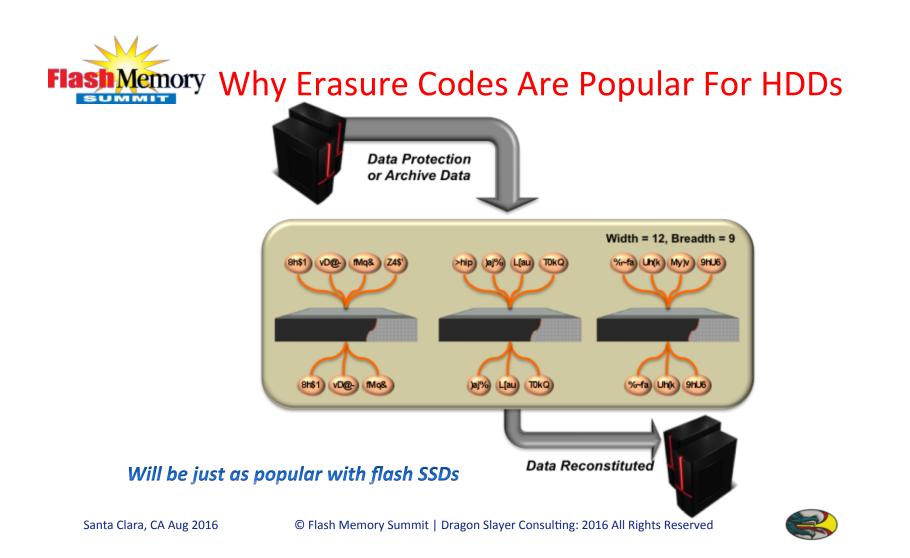
- ♦ Treated as drive failure
- Drives taken offline, rebuilt

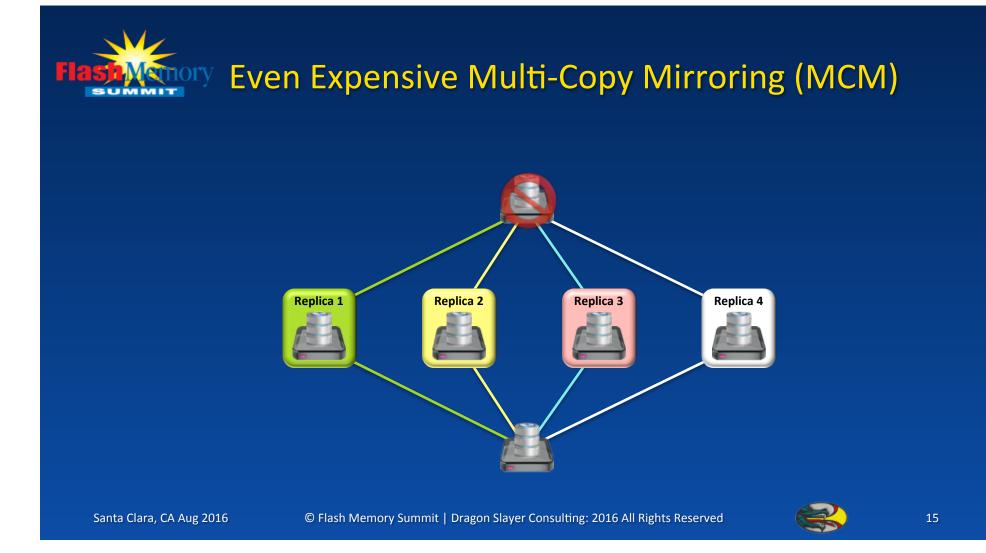
SSD Unrecoverable Bit Errors

- ♦ Treated as P/E block failure
- Capacity over-provisioned
 - Replace failed P/E block
 - From internal overage

Santa Clara, CA Aug 2016

Rebuilds used to be measured in hours


- ♦ Today it's days, weeks, or months
 - ♦ Depending on priority
- ♦ During rebuilds
 - Controller performance declines
 - Data loss risk increases
- ✤ Flash SSDs rarely need to be rebuilt

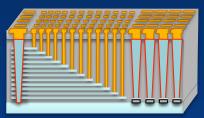


© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

Flash Memory Infrastructure Costs Are Quite Different

Flash storage sold differently from HDDs

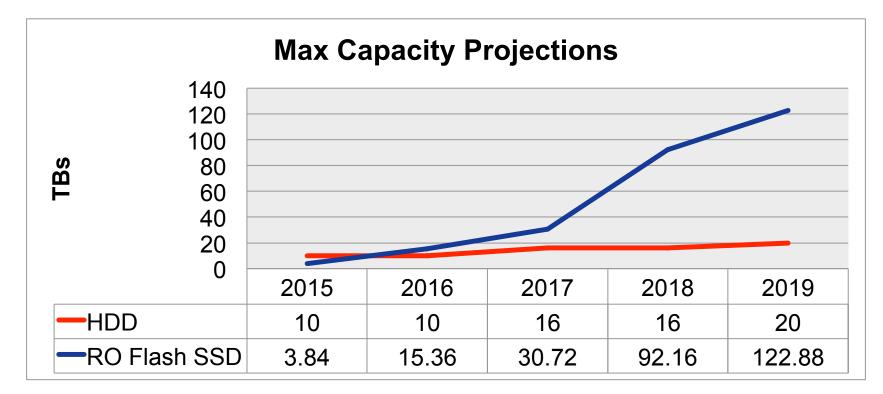
- HDDs sold by # drives required for performance =
 - Over capacity, & > shelves, rack space, floor space
 - + > infrastructure (switches, cables, conduit, power/cooling)
 - Which consumes yet more DC real estate
- Flash SSDs sold on performance & capacity requirements
 - Require much < drives & < capacity</p>


Density For Secondary Storage A Factor

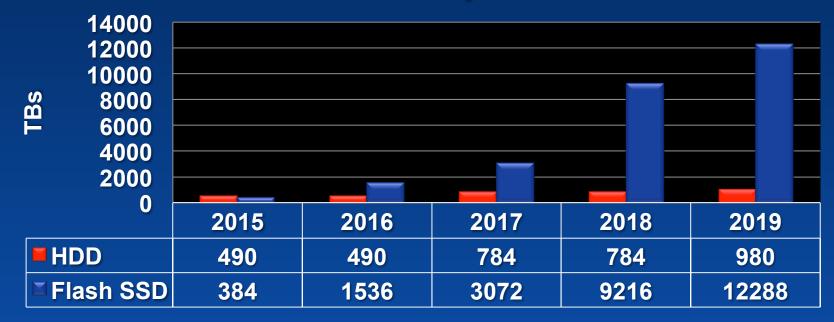
All technology advances – some faster than others

♦ HDDs

- PMR perpendicular magnetic recording
- ♦ Helium sealed
- SMR shingled magnetic recording
- HAMR heat assisted magnetic recording



- ✤ Flash SSDs
 - ♦ 15nm 2D planar MLC
 - ♦ CFMs custom form modules
 - ♦ 32/48/64/128 layer TLC 3D NAND
 - ♦ 3D QLC 3D NAND coming


Santa Clara, CA Aug 2016

© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

Max Density/2U

Santa Clara, CA Aug 2016

© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

HDD

- ♦ Max Density
 - ♦ 980TB 4U
 - ♦ > 300 lb drawer
 - ♦ Requires server lift + ladder

Flash SSD or CFM

- ♦ Max Density
 - ♦ 512TB (raw) 3U CFM
 - ♦ 384TB (raw) 2U 2.5" SSD
 - ♦ Requires ladder

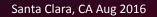
Santa Clara, CA Aug 2016

HDD

- ♦ Max Density
 - ♦ 980TB 4U
 - ♦ > 300 lb drawer
 - ♦ Requires server lift + ladder

Flash SSD or CFM

- ♦ Max Density
 - ♦ 1.024PB (raw) 3U CFM


 - ✤ Requires ladder

Santa Clara, CA Aug 2016

What About Measuring Cost?

mpup

© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

Tends to be \$/TB or comparative \$/TB

- Acquisition costs
- ♦ Mostly \$/raw TB

Santa Clara, CA Aug 2016

© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

Flash Memory Understanding Effective Capacity

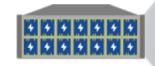
- ♦ Raw capacity
 - Untouched out of box
- ♦ Usable capacity after
 - ♦ Formatting
 - ♦ File system
 - ♦ RAID
- ♦ Effective capacity after
 - Compression
 - ♦ Dedupe
 - ♦ Encryption

Santa Clara, CA Aug 2016

Levels cost playing field

- ♦ Acquisition \$ +
- ♦ Infrastructure reduction savings ÷
- ♦ IOPS (or MBps) ÷
- ♦ Effective usable TBs =
- ♦ \$/IOPS/TB or
- ♦ \$/MBps/TB

Santa Clara, CA Aug 2016



Levels playing field

- ♦ BUT...
 - Only looks at system costs
 - Doesn't look at > productivity costs
 - Doesn't look at much > increased revenue

Santa Clara, CA Aug 2016

Measuring Productivity

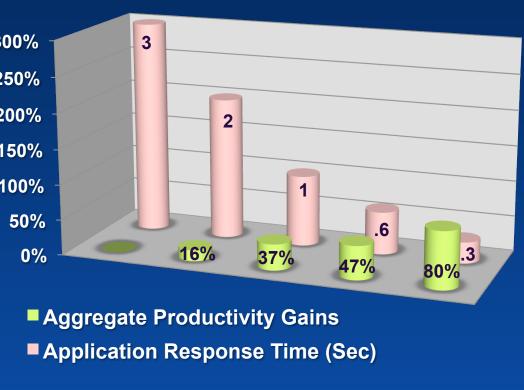
Santa Clara, CA Aug 2016

© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

Flash Memory IBM's "The Economic Value of Rapid Response Time"

1st published 1982 repeated since

- Faster app response times = much > productivity
- ♦ In addition
 - Application costs plummeted
 - Much > user work satisfaction
 - Much > morale
 - Much > work quality
- ♦ Findings surprise
 - ♦ as little as .5 seconds = huge impact
- Each study repeat = similar results


Santa Clara, CA Aug 2016 © Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

Measuring Productivity Gains

Application	Aggregate	Net	
Response	Productivity	Productivity	3
Time (Sec)	Gains	Gains	2
3	0%	0%	2
2	16%	16%	2
1	37%	21%	1
0.6	47%	11%	
0.3	80%	33%	1

Santa Clara, CA Aug 2016

© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

Flash Memory Converting Worker Productivity To Hard \$

Before Flash Storage

- Avg app response time = 1 sec
- Requirement = .3 sec
- ♦ 44% productivity gained
 - When achieved

Worker Productivity Gains

- Avg worker burdened* cost
- Productivity savings

 - ♦ 100 workers = ~ \$3,264,500 / yr

*Burdened costs include benefits, payroll taxes, and allocated fixed overhead

Santa Clara, CA Aug 2016

Converting IT Productivity To Hard \$

Before Flash Storage

IT Admin Productivity Savings

- Troubleshooting performance
- ♦ Tuning performance
- ♦ ~ same 44% productivity savings

- Avg burdened* cost
 \$ ~ \$100,000 / yr
- ♦ Productivity savings

 - ♦ 5 IT admins = ~ \$220,000 / yr

*Burdened costs include benefits and allocated fixed overhead

Santa Clara, CA Aug 2016

No it is not because work not completed in time =

- ♦ Overtime = > \$
- ♦ Or > workers = > \$
- Or > outside contractors = > \$
- ♦ < Morale</p>
- > Turnover
- ♦ > Hiring \$
- ♦ > Training \$

Santa Clara, CA Aug 2016

Santa Clara, CA Aug 2016

© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

Measuring Revenue Gains/Losses

Santa Clara, CA Aug 2016

© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

Response time variance (≤ .5s) has huge impact

- ♦ Google found
 - Std search results are 10/page/search
 - Users wanted 30/page/search
 - Added .5s/response
 - ♦ Traffic & revenue dropped 20%

© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

Response Time Revenue Implications

Response time variance (≤ .5s) has huge impact

- Amazon found similar results
 - Experimented w/100ms increments
 - Even 100ms = significant lost revenue
 - Worse, inconsistent response time
 - A 1s slowdown = ~ \$1.6B lost sales/yr

Santa Clara, CA Aug 2016

Response time variance (≤ .5s) has huge impact

- AOL discovered
 - Page views decline as load times >
 - ♦ As much as a 33% decline
 - Between best & worst load times

Santa Clara, CA Aug 2016

© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

On the flip slide reducing response time has powerful impact

- ♦ Shopzilla found response time reduction
 - From ~ 7s to ~2s had positive results
 - ♦ 25% > page views
 - ♦ 7-12% > revenue
 - ♦ 50% < hardware</p>

Santa Clara, CA Aug 2016

© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

Flash Memory Every Industry Has Similar Revenue Cases

Unique \$\$\$\$ tied to faster time-to-market

- ♦ Financial services
- ♦ Insurance
- ♦ Online gaming
- ♦ Web retail
- ♦ Healthcare
- ♦ Energy
- ♦ Life Sciences
- ♦ Big Pharma

Santa Clara, CA Aug 2016

© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

Calculating That Material Revenue Impact

Projected Revenue Gains Formula

- ♦ T = # of quarters gained in time to market
- ♦ R = projected revenue/quarter gained
- EQGR = expected quarterly growth rate
- ♦ TQ = total # of quarters

Total Net Revenue Gained = $[(T^*R)^*(1+EOQR)^{(TQ)}] - [(T^*R)^*(1+EOQR)^{(TQ-T)}]$

Flash Memory Yeah But, What About Secondary Applications?

They're secondary or batch applications for a reason...BUT

- What's your cost for missing the time window?
 - ♦ DP (backup) job
 - ♦ DBMS copy & replicate
 - ♦ Recovery RTOs
 - ♦ BI analytics
 - Archive ingest

© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved

Handows Huuuuge Costs For Missing Time Windows

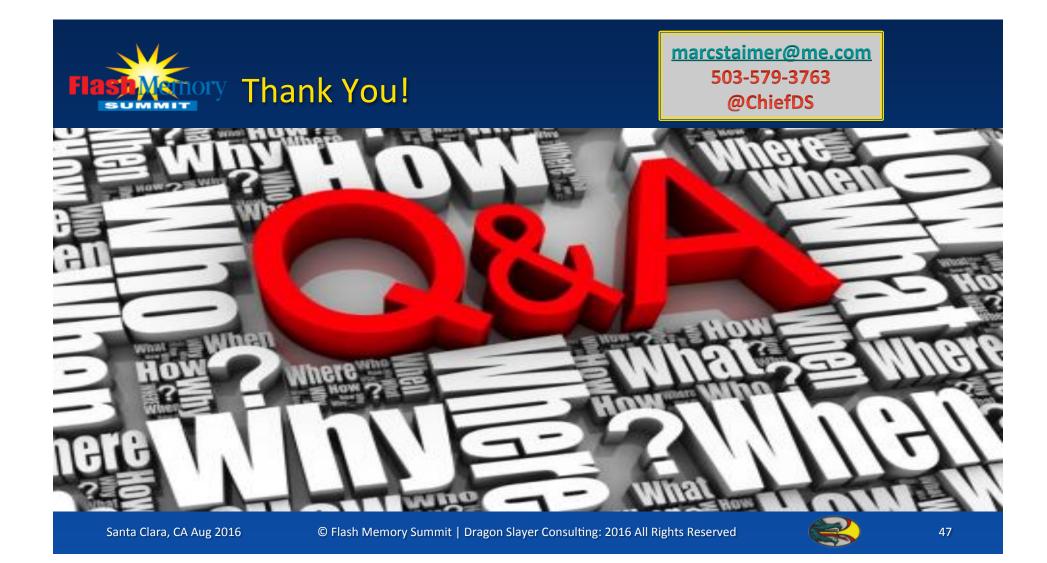
- ♦ Business
- ♦ Revenue
- ♦ Reputation
- ♦ Clients
- Customers
- Possibly the business

Santa Clara, CA Aug 2016

Putting It All Together

Santa Clara, CA Aug 2016

© Flash Memory Summit | Dragon Slayer Consulting: 2016 All Rights Reserved


For accelerated application response time

- Productivity savings +
- Net revenue gains +
- ♦ Hardware & infrastructure savings –
- ♦ Flash Storage TCO =
- ♦ Expected Value

Santa Clara, CA Aug 2016

