

RRAM Status and Forecast

Mark Webb MKW Ventures, LLC

Flash Memory Summit 2016 Santa Clara, CA

Storage Class Memory

- Storage Class Memory is promising new application for NVM
- Intel/Micron have announced 3D Xpoint as solution
 - Intel support for architecture, software, applications is providing the demand along with the memory
 - Other NVM options can benefit from this lead
- Potential Market for 3DXpoint/RRAM SCM is >\$1B in 2018. >\$2B in 2020

New NVM Technologies

	Latency	Density	Cost	HVM ready
DRAM	****	***	***	****
NAND	*	****	****	****
MRAM	****	*	*	**
PCM (Micron)	***	****	**	*
3DXP	***	****	****	*
ReRAM	***	****	***	*

RRAM density, Cost, and latency numbers make it ideal to fill SCM gap

Flash Memory Summit 2016 Santa Clara, CA

- Phase change memory
 - Licensed and researched by nearly every memory company
 - If we assume 3D Xpoint is some variation of PCM, it will ship this year with more revenue in 2017 than all other new NVM combined (301C)
 - Excellent storage class memory in a cross point layout at 128gbit density
- MRAM
 - Very old technology. STT gaining traction and shipping for revenue
 - Fastest NVM... close to DRAM. Max density is 256Mbit.
 - >5 years minimum from matching todays DRAM densities, 12+ from NAND densities
- RRAM (This Talk)
 - Opportunity for highest density and lowest cost
 - Performance is optimal for Storage class memory

Flash Memory Summit 2016 Santa Clara, CA

- Lots of technologies and physics
- Papers published show capability for 32Gbit+.
 - Sandisk 32Gb device at 130mm² (crosspoint)
 - Micron 16Gb device at 168mm² (not crosspoint)
- Revenue products come from embedded applications in Mbit range
 - Unity (Rambus), Adesto, Panasonic
 - These are interesting for physics but not applicable to 90% of FMS topics

What We Hear in RRAM Presentations

- 1TB on postage stamp in future
- More scalable than NAND
- Crosspoint solutions are lowest cost (4F²)
- New selector elements and leakage suppression tricks
- The question is:
 - Can RRAM become a low cost, storage class solution???

Flash Memory Non-Cross Point Micron ISSCC

- 16Gb in 168mm², 27nm, ~0.1Gbit/mm2
- Paper shows complex layout and very tight spacing.
- Modeled cost is higher than DRAM
 - Not cost effective compared to NAND or DRAM
 - What if we shrink to more aggressive node?

Device	COST \$/GB
2017 DRAM COST	1X
27nm	1.1x
20nm	0.6x
14nm	0.4x

Advanced 27nm RRAM Cell

Flash Memory Summit 2016 Santa Clara, CA

- 32Gb in 130mm2, 24nm, ~0.2Gbit/mm2
- Cross point is much better and takes advantage of scaling
- Lower cost than DRAM at 24nm... 1/3 the cost at 14nm

Device	COST \$/GB
2017 DRAM COST	1X
24nm	0.6x
14nm	0.3x

- At higher densities, we get better array efficiency and take advantage of scaling. >1Gb/mm²
- 2 layer array, 100Gb at 20nm, 200Gb at 14nm
- Result: Significantly Cheaper than DRAM
- Result: 14nm similar to NAND costs

Device	COST \$/GB	
2017 DRAM COST	1X	
20nm	0.2x	
14nm	0.15x	

Vertical (3D NAND Type Structure)

- A vertical RRAM structured is possible using similar processing to 3D NAND
- Need to embed selector material in similar way as Micron Floating gate
- Cost would potentially be in same range as 3D NAND structure (+/- 20%)
- Issue is physics and maturity of RRAM device
 - NAND was extremely mature when moved to vertical
 - Solution: implement in crosspoint (2018). Migrate when mature to 3D NAND type structure (2021).

Cost Implications and Data

- Costs for published RRAM devices are higher than NAND and close to DRAM pricing
- Cost target required for SCM is possible for RRAM
 - Crosspoint array required
 - 2 layer array, Large density
 - 14nm or below
 - Mature process and yields
- Additional layers, Vertical cells, MLC would allow even lower cost

Flash Memory Summit 2016 Santa Clara, CA

- SCM is moving from a concept to high revenue market over next few years
 - 3D Xpoint will create and grow this market demand
- RRAM is a leading candidate to meet SCM requirements for cost
- Model shows a crosspoint RRAM technology with cost below DRAM at 20nm
 - Approaching NAND cost at 14nm
 - NAND like costs with vertical structure in 2021 timeframe