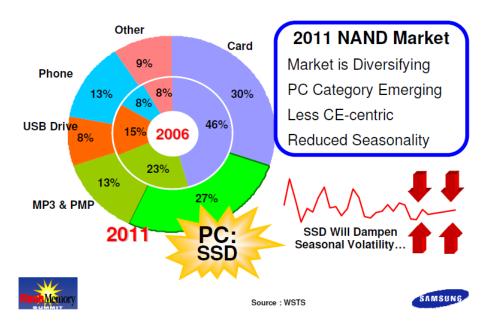


HOW TO MAKE A RUGGEDIZED SSD


Chris Budd SMART High Reliability Solutions

Introduction

 In one decade SSDs went from existing only in expensive, rugged environments, to existing in all environments.

NAND Application Trends: 2011

From 2007 FMS presentation "SSD: The Next Killer App" by Jim Elliot.

- Today most SSDs cannot survive in the rugged environments of their ancestors.
 - Solid-State components with no moving parts is not enough.
- What are the problems with designing a ruggedized SSD?
- What can be done to solve those problems?

Memory What is a rugged SSD?

- Able to survive extreme temperature
- Able to survive extreme shock and vibration
- Good start, but need to be more precise

Memory What is a rugged SSD?

- Able to survive MIL-STD-810G
- Need to define specific tests and parameters
 - Operating temperature: -40°to +85°C
 - Operating shock: 50G based on half-sine shock pulse of 11ms
 - Operating vibration: 10Grms random 20-2000Hz (jet)

Memory What is a rugged SSD?

- No temp-controlled, 19" rack with UPS able to send ATA flush command to the SSD
- Power cannot be guaranteed
- Also cartridge may be ejected at any time

Memory Temperature Problems

- Cold
 - Clocks and power supplies fail to start
- Hot
 - Component degradation
 - Reduced NAND retention
- NAND bits flip between temperature extremes

Memory Temperature solutions

- Primarily an electrical problem
 - Select industrial-temperature rated components
 - Design robust power supplies
 - Passive components can change value at temp extremes

Memory Temperature solutions

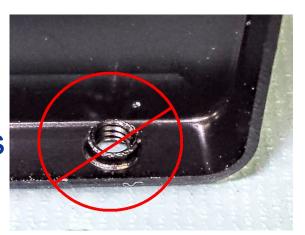
- Mechanical can help
 - Transfer of heat away from sensitive components
 - Use thermal interface material and creative enclosures

Flash Memory Summit 2016 Santa Clara, CA

Temperature solutions

- Firmware can help
 - Add additional error correction codes
 - Refresh contents periodically
 - Handle any potential interrupt source (for example, floating GPIO pins)

Memory Shock and vibration problems


- Causes structural damage to enclosure and PCB
- Wreak havoc on connectors

Flash Memory Summit 2016 Santa Clara, CA

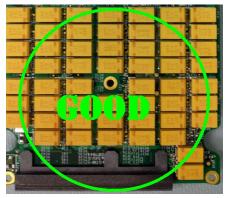
Shock and vibration solutions

- Primarily a mechanical problem
- Design thick, rugged enclosure
- Have more than a couple threads
- Apply staking and/or underfill
- Use flex cables to join PCBs

emory Unexpected power loss problems

- Must save mapping tables and cached data
- Larger DRAM improves performance numbers, but takes more time to flush
- Super caps leak and fail faster at high temps
- Quick power cycles leave residual charge on capacitors confusing charging systems

Memory Unexpected power loss solutions


- Mechanical solutions
 - Reduce temperature as discussed earlier
- Firmware solutions
 - Save only modified tables.
 - Reduce number of modified tables by periodically flushing them while power is stable
 - Disable extraneous circuits like SATA, LEDs, etc.

Memory Unexpected power loss solutions

- Electrical solutions
 - Use discrete capacitors rather than super caps
 - De-rate capacitance at high temperatures
 - Use bleed resistor to drain residual charge

Flash Memory Summit 2016 Santa Clara, CA

- Most SSD environments today are not rugged.
- Most SSDs do not need these solutions.
- Requires extra design time, testing, cost, etc.
- Requires multiple disciplines:
 - Mechanical
 - Electrical
 - Firmware

- SMART High Reliability Solutions
 - Has over 20 years of experience in rugged, solidstate storage
 - Has the solutions for rugged military and industrial applications
- Find us in booth #627 and ask us your ruggedization questions