

NRAM: High Performance, Highly Reliable Emerging Memory

<u>Sheyang Ning^{1,2}</u>, Tomoko Ogura Iwasaki¹, Darlene Viviani², Henry Huang², Monte Manning², Thomas Rueckes², Ken Takeuchi¹

¹Chuo University ² Nantero Inc.

Introduction of NRAM

- Single NRAM cell and cell array measurement setup
- NRAM characteristics
 - DC-IV curve
 - Set and reset program characteristics
 - Large on/off ratio
 - High temperature program
 - High endurance
- Conclusion

Santa Clara, CA

Compare with Conventional Memories

\bigcirc = good \times = bad

	DRAM	NAND flash	NRAM	
Performance	0	×	♦	— 20 ns pulse [1]
Scalability	×	0	() ←	— Single cell 15 nm
Endurance	0	×	() ←	[2] — Single cell 10 ¹²
Non-volatile	×	0	() ←	[3] — 1000 years@ 85°C
		-	-	· [2]

[1]. S. Ning et al., IEEE Symp. on VLSI Technology, Jun. 2014, pp. 96–97.

[2]. Nantero Presentation for ITRS ERD/ERM, International Technology Roadmap for

Flash Memory Summit 2016 Semiconductors (ITRS), 2013.

[3]. S. Ning et al., IEEE Trans. on Electron Devices (TED), vol. 62, no. 9, pp. 2837–2844, Sept. 2015.

Compare with Emerging Memories

	ReRAM [1]	PRAM [2]	NRAM [3]
Material	Al _x O _y	Ge₂Sb₂Te₅	Carbon nanotube (CNT)
Resistive switching on read	Filament size	Phase change	Tunneling current between CNTs
Endurance	10 ⁸	10 ⁹	10 ¹²
Current	High	High	Low

[1]. S. Ning et al., Solid-State Electronics, vol. 103, pp. 64–72, Jan., 2015.

[2]. H. Y. Cheng et al., IEEE Int. Electron Devices Meeting, 2013, pp. 30.6.1–30.6.4.

[3]. S. Ning et al., Symp. on VLSI Tech., 2014, pp. 96–97.

Flash Memory Summit 2016 Santa Clara, CA

[4]. S. Ning et al., Ext. Abstr. Solid State Devices and Materials (SSDM), Oct. 2015, pp. 1198-1199.

Flash Memory Summit 2016 Santa Clara, CA

S. Ning et al., in VLSI Symp. Tech. Dig., Jun. 2014, pp. 120–121.
 Nantero presentation, Int. Tech. Roadmap for Semiconductors (ITRS), 2013.

Set: attraction force

Reset: repulsive force

Flash Memory Summit 2016 [1]. S. Ning *et al.*, *IEEE Trans. on Electron Devices (TED)*, vol. 62, no. 9, pp. 2837–2844, Sept. 2015. Santa Clara, CA

- Introduction of NRAM
- Single NRAM cell and cell array measurement setup
- NRAM characteristics
 - DC-IV curve
 - Set and reset program characteristics
 - Large on/off ratio
 - High temperature program
 - High endurance

Conclusion

Single NRAM Cell and Cell Array Test

140 nm NRAM single cell 116 nr

116 nm, 4 Mbits NRAM cell array

Flash Memory Summit 2016 Santa Clara, CA [1]. S. Ning et al., IEEE Trans. on Electron Devices (TED), vol. 62, no. 9, pp. 2837–2844, Sept. 2015.
[2]. G. Rosendale et al., Proceedings of the European Solid-State Circuits Research Conference (ESSCIRC), Sept. 2010, pp. 478–481.

- Introduction of NRAM
- Single NRAM cell and cell array measurement setup • NRAM characteristics DC-IV curve Set and reset program characteristics Large on/off ratio High temperature program High endurance
- Conclusion

Single cell bi-polar program

Flash Memory Summit 2016 Santa Clara, CA

[1]. S. Ning et al., IEEE Symp. on VLSI Technology, Jun. 2014, pp. 96–97.

Flash Memory Summit 2016 Santa Clara, CA

[1]. S. Ning et al., IEEE Trans. on Electron Devices (TED), vol. 62, no. 9, pp. 2837–2844, Sept. 2015. [2]. S. Ning et al., IEEE Symp. on VLSI Technology, Jun. 2014, pp. 96–97.

 Cell array measurement, Reset is driven by both voltage and current

Set and Reset Voltages

 Use incremental pulse programing on single cell

Reset voltage

• Three randomly chosen NRAM cells

Flash Memory Summit 2016 [1]. S. Ning *et al.*, *IEEE Trans. on Electron Devices (TED)*, vol. 62, no. 9, pp. 2837–2844, Sept. 2015.

• Single cell measurement

> 100 times on/off ratioPossible for multi-level cell (MLC)

Read at 1 V

Flash Memory Summit 2016 Santa Clara, CA

[1]. S. Ning et al., IEEE Symp. on VLSI Technology, Jun. 2014, pp. 96–97.

• Single cell measurement, stable program voltage at different temperatures

Flash Memory Summit 2016 Santa Clara, CA

[1]. S. Ning et al., IEEE Trans. on Electron Devices (TED), vol. 62, no. 9, pp. 2837–2844, Sept. 2015.

Single cell

Cell array

Flash Memory Summit 2016 Santa Clara, CA [1]. S. Ning et al., IEEE Trans. on Electron Devices (TED), vol. 62, no. 9, pp. 2837–2844, Sept. 2015.
[2]. S. Ning et al., Ext. Abstr. Solid State Devices and Materials (SSDM), Oct. 2015, pp. 1198-1199.

• Cell array does not wear-out after 10⁸ write cycles

Flash Memory Summit 2016 Santa Clara, CA

[1]. S. Ning et al., Japanese Journal of Applied Physics (JJAP), vol. 55, no. 4S, 2016.
[2]. S. Ning et al., Ext. Abstr. Solid State Devices and Materials (SSDM), Oct. 2015, pp. 1198-1199.

- Introduction of NRAM
- Single NRAM cell and cell array measurement setup
- NRAM characteristics
 - DC-IV curve
 - Set and reset program characteristics
 - Large on/off ratio
 - High temperature program
 - High endurance
- Conclusion

- NRAM is an emerging nonvolatile memory cell which has performance between DRAM and NAND flash.
- Compared with other emerging nonvolatile memories, NRAM has competitive characteristics, including, lower program current, large on/off ratio, large endurance, high temperature stability and long retention time.