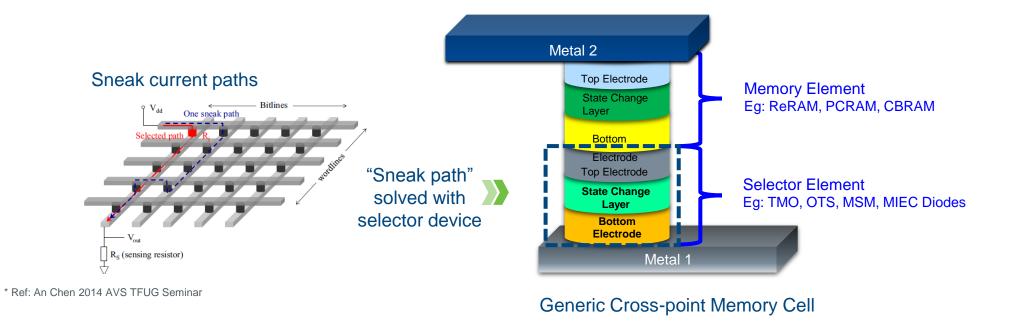


Challenges in Vertically Stackable Selectors for 3D Cross-Point Non Volatile Memories

Milind Weling, Mark Clark and Steve Park
 Intermolecular Inc.
 11 August 2016

Outline


Introduction and Background

- o 3D Cross Point Architecture memory and selector
- o Selector Types
- NVM Device Development Challenges
- High-Throughput Experimentation Methodology
 - o PVD Deposition and Etest
 - Test Vehicle Considerations
- Selector Case Studies
 - Tc screening vs composition
 - o Electrical screening
- Summary

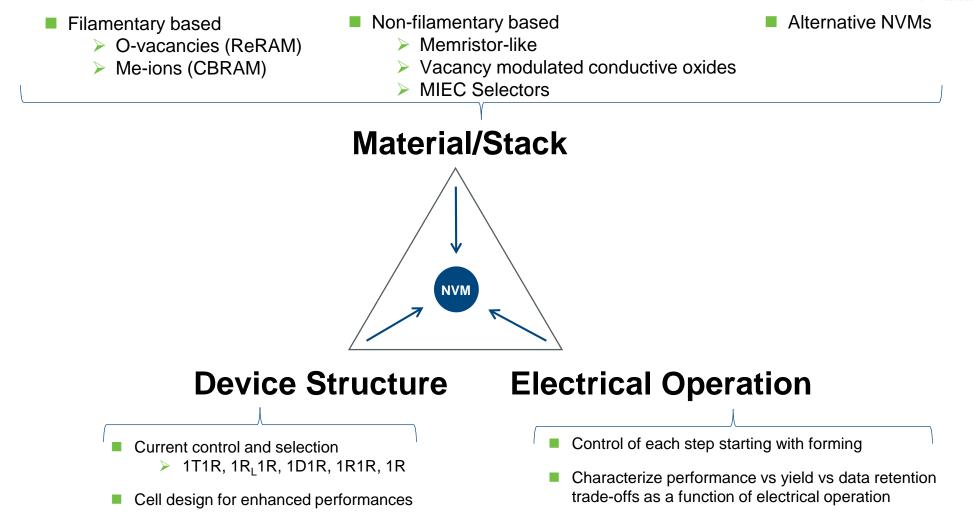
3D Cross-point Memory – Selector Architecture

Challenges with Sneak Current Paths for 3D Cross-point Memory

Selector devices are critical to eliminating sneak current paths

Disruptive selectors needed to address performance, density and reliability requirements

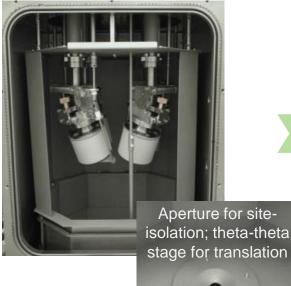
Survey of NVM Selector Device Options



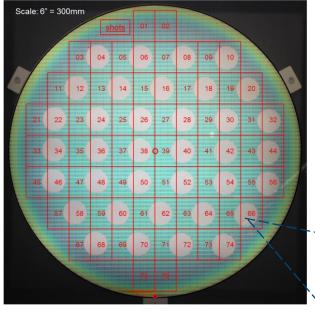
	Selector Req'ts	MSM	Oxide- PN ⁴	MIEC ⁶	Metal- Oxide Schottky ⁵	MIIM Bi- directional Varistor ⁷	Chal OTS ⁸
Max Forward Current Density/ Feature Size	~10 ⁶⁻⁷ A/cm ²	~10 ⁶⁻⁷ A/cm²	~5x10 ⁴ A/cm ² @2V 0.5x 0.5um	∼10 ⁵⁻⁶ A/cm²@1V ~80nm bot	3x10⁵ A/cm²@2V 2x2um	~3x10 ⁷ A /cm ² @2.5V 250nm hole	Feasibility shown for 90nm PCM
J _{FB} /J _{RB} Ratio & J _{+Vs} /J _{+Vs/2} Ratio	> 10 ⁵ > 10 ³	~ 103	~10 ⁴ ~100	~104	2.4x10 ⁶ ∼10 ³	~104	Met PCM Req
Directionality	Uni or Bipolar	Bipolar	Unipolar	Bipolar	Unipolar	Bipolar	Bipolar
Switching Time/ Endurance	< 0ns/ > 0 ⁸	<10ns > 10 ⁷	10-100ns/ ?	~ lus/ > 10 ⁶	< 1ns ?	< 1ns/ > 10 ¹⁰	Feasibility shown for 90nm PCM
Deposition Temp/ Thermal Stability	< 400C/ > 400C	< 400C/ > 400C	< 400C/ ?	200C/ > 400C	250C/ <mark>?</mark>	300C/ ?	< 400C/ Issue
Typical Materials/ Stacks Used	Fab Friendly	Semicond uctors	CuO/ IZO NiO/ IZO	Cu in Solid Electrolyte	<mark>Pt</mark> /TiO ₂ / TiO _{2-x} / <mark>Pt</mark>	Pt/TaO _x /TiO ₂ /TaO _x /Pt	<mark>As</mark> , Ge, Si, <mark>S, Se</mark> ,Te,N
I – V Curves			The second secon	Vm = 1.50V	C 100 000 000 000 000 000 000 000 000 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Threshold Singuback

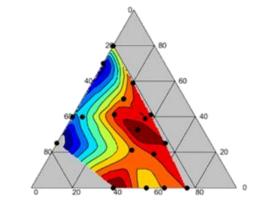
Choice of selector devices in 3D Cross-point implementation is a trade-off between performance, reliability and ease of integration

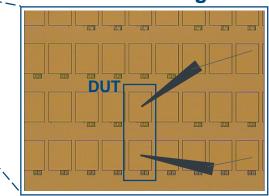
NVM Device Development Considerations



Disruptive NVM memories/selectors need fast and comprehensive device screening/ experimentation


PVD Site-Isolated Deposition and Test


IMI P-30 PVD Chamber


Site Deposition on 300mm wfr

Ternary Space Screen

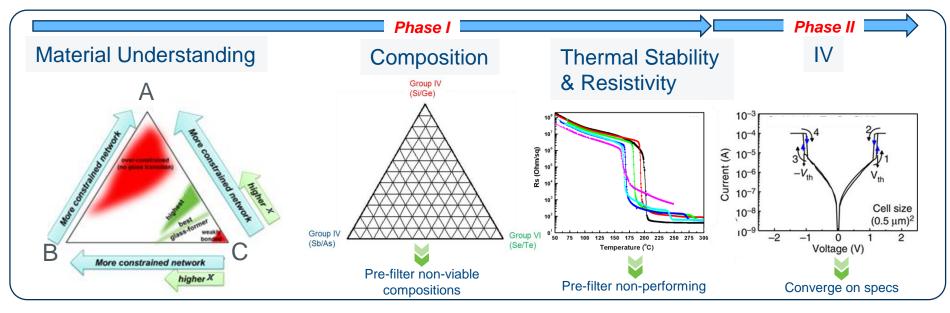
DUT Probing

Each site is an independent experiment

- Each layer can be deposited by 1 to 5 sputter sources
- Multiple layers can be deposited at one site
- Aperture defines area where material is deposited \rightarrow areas are site isolated
- Shutters for Aperture and Target prevents cross-contamination between layers & targets
- Each site composition is physically and electrically characterized

Rapid deposition and screening of compositionally diverse space of interest

NVM Device Development Stages

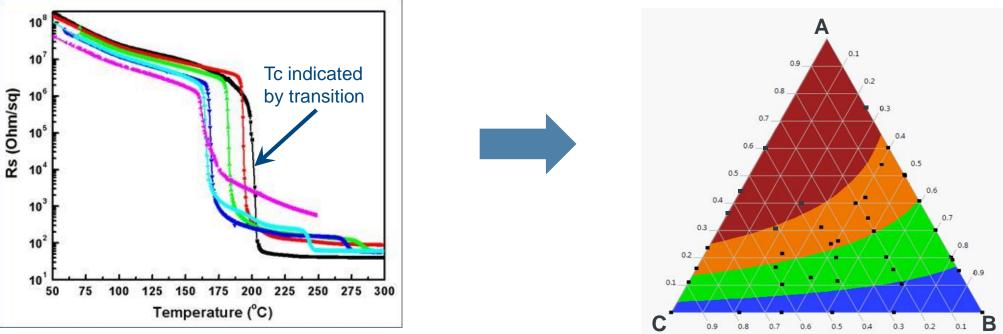

	Test Vehicle	Description	Output
Level	Unit Films on Blanket Wafer <1 week	Materials screening, ALD and PVD unit process optimization and integration	Saturation and growth curves, dep ratePhysical/electrical characterization
	Shadow Mask <3 days	Measure I-V at RT before/after anneal	 Leakage Density, Resistivity
Level 2	Primary Test Vehicle 1-2 DOEs/week 16-20 COLs/DOE	Mushroom Like, BEL CD≥150nm, 1R1R, Single Bit/Mini-Array Mushroom like → ~70um Scale ← Pad oxide Interconnect oxide	 Pulse P/E Power Read State Disturbance P/E Power vs Time
Level	Secondary Test Vehicle 1 DOE/ 2-3 weeks 16-20 COLs/DOE	Column/Pillar Like, TEL= BEL CD≥150nm, 1R1R and 1T1R, Single Bit/Mini-Array <u>Pillar</u> Pad ~150nm Scale R/W Cell → Diode Interconnect oxide	 Data Retention Endurance Performance Variability
ω	Tertiary Test Vehicle 1 DOE/ 4-5 weeks 5-10 COLs/DOE	Column/Pillar Like, TEL= BEL CD≥ Minimum 1R1R and 1T1R, Single Bit→Large Arrays At Dimension Memory Array	 Area Scaling Integration and Yield MLC and ECC

* Ref: TY Liu 2013 ISSCC

NVM Selector Screening Methodology

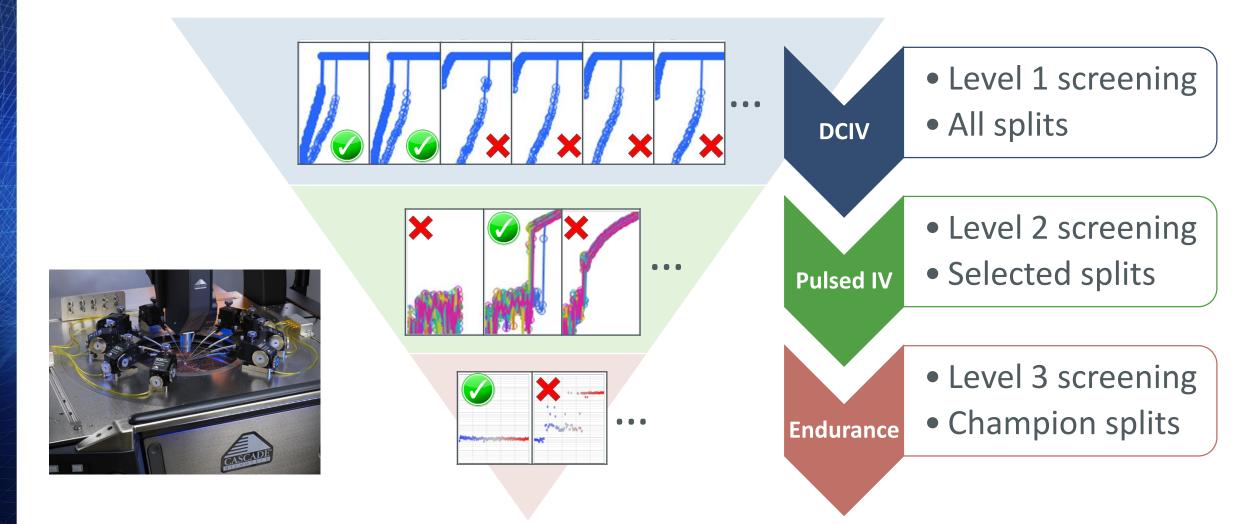
- Material composition space for Chalcogenide glasses exhibiting threshold vs. memory switching can be rapidly screened for physical and electrical performance.
- Explore composition space of Group IV (Si, Ge), V (As) and VI (Se, Te) compounds to develop guideline of thermal stability, resistivity, optical bandgap and I-V characteristics

- Phase I Composition vs. Thermal stability, crystallinity, resistivity, and optical bandgap
- Phase II Composition vs. IV (Selected portion of Phase Diagram)


Selector development is based on High-Throughput-Experimentation deposition and characterization methodology

Phase I: Rapid Screening of R_s vs Temperature

Varying composition AxByCz


Response Surface: Tc, Crystallization Temp

Rapid evaluation of the composition space for Tc enables the use of Tc as a pre-filter for promising selector candidates

Phase II: Electrical Characterization

□ Increasingly advanced electrical characterization used to realize screening promising selector candidates

Summary

- The move towards 3D Cross-point architecture for non-volatile memories has resulted in a need for disruptive memory and selector devices
 - Choice of selector devices is a trade-off between performance, reliability and ease of integration (fab-friendliness)
- Realization of disruptive NVM memories/selectors needs fast and comprehensive device screening/experimentation
- We propose a High-Throughput-Experimentation methodology that enables rapid new materials development and characterization for:
 - Compositionally wide material space
 - Increasingly complex electrical performance characterization
- IMI has successfully collaborated with customers to realize novel devices using this methodology

