

New Data Protection System for NVMe SSD

Alan Wu, Sr Director, Memblaze zhongjie.wu@memblaze.com

2016/8/8

- Capacity of NVMe SSD keep increase, but price continue going down
 - The capacity of PblazeV is above 11TB
- NVMe SSD has been widely used in internet services and traditional industry customer start to choose NVMe SSD

Critical Issue:

Data Protection for NVMe SSD

- Hardware RAID
 - Hardware RAID supports SAS/SATA interface
 - Guarantee the data reliability of SAS/SATA SSD and HDD
 - Hardware RAID cannot support NVMe interface
 - NVMe SSD has extreme high performance
 - RAID controller becomes performance bottleneck
- Software RAID
 - Can aggregate the performance of NVMe SSD
 - Fully leverage the resource of multi-core CPU

Software RAID Concerns

- Data reliability
 - System crash, how to guarantee data reliability?
 - Considering NVMe SSD has high performance, data buffer can be removed to achieve the same data reliability as hardware RAID
- Performance
 - Does parity computing consume CPU cycles?
 - Intel CPU provides SSE/AVX acceleration instructions
- Resource utilization
 - Resource is shared by software RAID and application, how to isolate them?
 - Few source is consumed by software RAID, and CPU resource also can be controlled by Cgroup mechanism
- OS installation
 - Most of software RAID cannot support OS installation
 - Software RAID tool can be integrated into UEFI to support OS installation

Redefine NVMe software RAID

- NVMe software RAID revolution
 - Resolve all concerns about traditional software RAID
 - Address NVMe SSD new storage issues
- Key technologies to redefine NVMe software RAID
 - Leverage CPU multi-cores and improve CPU efficiency
 - Lock-free algorithm
 - Enlarge SSD lifespan and avoid simultaneous failure
 - Global wear leveling and anti-wear leveling
 - Enhance data reliability to make system more robust
 - New SSD failure model and algorithm
 - Avoid data loss in case system power failure
 - Remove data buffer and do SYNC IO handling model

- Major features
 - Guarantee data reliability for NVMe SSD
 - Aggregate the performance of multiple NVMe SSDs
 - Fully support data automatic tiering
 - Easy storage management

Software RAID New Architecture: Storage Virtualization based Architecture

- Storage Virtualization
 - Can improve data reconstruction performance significantly

VS

- Can fit SSD new failure model and the characteristics of SSD
- Provides basic mechanism to do global wear leveling and anti-wear leveling
- Simplify RAID to do IO QoS

P0 F I

P1 H

E P2

Flash Memory Summit 2016 Santa Clara, CA

P3

- NVMe SSD has high performance, CPU becomes bottleneck
 - Traditional storage software focus on disk issue
 - Magnetic drive has address seeking issue
 - NVMe RAID software need to take care CPU bottleneck issue, more than SSD issues
 - Memory issue / NUMA issue
 - Lock issue
 - Task scheduler issue
- Aggregate CPU multi-cores, satisfy development trends of CPU
 - Divide task and resource reasonably
 - Innovative lock-free producer-consumer algorithm
 - Patented lock-free flow control algorithm

• Performance can be increased with the number of CPU cores

FlashRAID Random Write IOPS Vs. Threads

Flash Memory Summit 2016^{IO Handling Thread} Santa Clara, CA **Iash** Memory

Innovative Smart Data Reconstruction

- Traditional reconstruction is running from begin to end on a hard disk drive
 - Cannot aware data and data loss risks
- Reconstruction method can be changed to enhance data reliability
 - NVMe SSD has excellent performance
- Smart data reconstruction
 - Data aware reconstruction
 - Take storage object as reconstruction unit
 - Priority based reconstruction
 - Data with high data loss risk should be reconstructed in high priority
 - Partial fast reconstruction

Flash Memory Summit 2016 Santa Clara, CA

Priority based Reconstruction

• Reconstruction performance can be scalable

Number of SSDs

Flash Memory SSD Lifespan Management

- Question
 - SSD has limitation of lifespan, how to maximize lifespan in system level?
- Global wear leveling between multiple SSDs
 - Static / dynamic wear leveling algorithm
- Anti-wear leveling to avoid simultaneous failure
 - PE cycle information in each SSD is the key parameter

Resource Allocator Test

Test Configuration: Xeon2680 (v2), two CPU sockets, 6 Pblaze4, RAID5

Sequential_Write_Bandwidth (16KB)

Sequential_Read_Bandwidth (16KB)

Flash Memory Summit 2016 Santa Clara, CA Random Write (3+1 RAID5, 4KB)

RANDOM READ IOPS

◆ 4KB ■ 8KB ▲ 16KB × 32KB × 64KB ● 128KB + 256KB - 512KB

- Software RAID is suitable for NVMe SSD data protection
 - Aggregate performance of NVMe SSD
 - Fit the development trends of CPU multi-cores
- Redefine software RAID for NVMe SSD
 - Lock free algorithms to resolve performance bottleneck of CPU
 - NVMe oriented design methods to resolve new issues of SSD
- FlashRAID is an excellent data protection solution for NVMe SSD

http://www.memblaze.com