

Persistent Memory (PM) for Big Data & Analytic

Kumar Prabhat, Sr Director Product, Plexistor

Flash Memory Summit 2016 Santa Clara, CA

1

- Enterprise Applications/IT Environment (2006 & Beyond)
- Emergence of New Generation of Applications
- The In Memory Challenges
- Opportunity for Flash and PM
- A New Approach to Storage
- Benefits
- Summary

Cloud

Enterprise Applications/IT Environment (2006 and Beyond)

Emergence of In Memory Applications and No SQL: 2010 & Beyond

- Millions of nodes deployed
- Massive Adoption of open source
- In-memory compute gave up on Storage and moved the working set to Memory
 - tremendous performance gains, but challenging

PLEXISTOR

- DRAM is limited and expensive
- Puts Data at Risk
- Suffers from slow recovery time during power failures
- Over provisioning to achieve QoS for dynamic workload
- Multiple compute & data silo's optimized for different applications

- Emergence of persistent memory
 - different cost/performance characteristics
 - NVDIMM, 3DxPoint, ReRAM
- Massive Adoption of Flash in Data Center
 - SAS, SATA, PCIe, NVMe
- Availability of Network Speed (40GB -> 100 GB)

- Bring the best of both worlds
 - leverage persistent memory and Flash
- Memory like speed to address application latency requirements
- High capacity & low cost of traditional storage

Flash Memory A New Approach to Storage

- New Software Stack for Persistent Memory
- Convergence of memory and storage
- Unlock the power of byte addressability of memory
- Tier Architecture with SCM and Flash
- Memory Oriented Data Services
- Support for standard API
 - POSIX, NVML

PLEXISTOR

Flash Memory Benchmark running in Amazon EC2

PLEXISTOR SOFTWARE-DEFINED MEMORY								
	Operation per second				Latency in µs			
	ZFS	XFS	PLEXISTOR SDM		ZFS	XFS	PLEXISTOR SDM	
Random 4KB write FIO benchmark	2,146	26,068	5,057,700	x 2357	8,313	1,452	3	x 2771
Random 128B write FIO benchmark	2,177	27,944	7,080,780	x 3253	8,263	1,358	2	x 4051
Cassandra v3.0.4 Large working set. Mixed(50% update)	4,395	6,398	25,535	x 6	8	8	7	x 1
MongoDB v3.2 Durable. Mixed	30,194	31,168	90,532	x 3	1,447	1,399	346	x 4
Couchbase v4.5 Large working set. Durable. Mixed	5,047	4,514	18,656	x 4	20,692	22,082	3,396	x 6
PostgreSQL v9.5 DBT2 warehouse workload	870	1,050	5,052	x 6	595	535	22	x 27
* To see live dashboard, press the running button. To reset data, click <u>here</u> E5-2650 v3 CPU, 32GB DRAM, 32GB NVDIMM, CloudSpeed SSD								

magnitude better than Rack Optimized Flash Storage solutions such as DSSD (~100 μ s)

Benefits

Predictable End User Experience

- Address dynamic work loads
- Eliminate storage spikes

Single Storage Platform

- Run all NoSQL DB's I/O & Latency sensitive
- Persistent

- No overprovisioning, no dedicated hardware
- Faster Recovery
- No Application Modification

PLEXISTOR

- Memory and storage convergence is the future!
- Persistent Memory is great technology, but also complex and expensive than Flash!

The right approach will be to mix FLASH with PM and new software stack