

Software-Defined Memory for At-scale and High-Performance Computing

Kurt Kuckein Director of Product Management

August, 2016

DDN About Us Solving Large Enterprise and Web Scale Challenges

History

- Founded in '98
- World's Largest Private Storage Company
- Growing, Profitable, Self
 Funded

Headquarters:

Santa Clara and Chatsworth, CA

Inc.

Gartner

World-Renowned & Award Winning the (451)group HPC: STORAGE Federal Computer Week

IDC 🌒

Analyze the Futur

What Are the Challenges?

At a Macro Level

For the past two decades, two trends have created massive I/O bottlenecks ...

Everything related to silicon evolution has gotten faster. Systems, Storage, Processors, Servers, Interconnect

SCALE

The data to process, distribute, share is much larger. Demanding Applications, Collaboration At-scale

DATA-INTENSIVE WORKFLOWS ACROSS ALL INDUSTRIES, ARE BRINGING IT INFRASTRUCTURE TO ITS KNEES

3

As speed & scale grow, so does contention and inefficiencies in both your file system and infrastructure. . .

GAME CHANGING TECHNOLOGY IS NEEDED TO BREAK THROUGH THE LIMITATIONS THAT HOLD BACK PROGRESS

As speed & scale grow, so does the requirement for instantaneous access, insight and results

A NEW TECHNOLOGY IS REQUIRED THAT'S BUSINESS ENABLING AND DISRUPTS STATUS QUO

What is IME?

Speeds I/O, Applications and Workloads

IME[®] Is 7 The New I/O Acceleration Architecture

IME's <u>Active I/O Tier</u>, is inserted right between Compute and the parallel file system

IME software intelligently virtualizes disparate NVMe SSDs into a single pool of shared memory that accelerates I/O, PFS & Applications

3 Key functions of IME

A Write Accelerating Burst Buffer

Absorbing the bulk application data into the NVMe solid state cache significantly faster than the file system can absorb it

A File System Accelerator and Application Optimizer As IME reorders application I/O to optimize flushing the cache to long term storage (enabling purchasing as little expensive cache possible).

A Read-optimized Application I/O Accelerator

That enables out-of-band API configuration of the IME appliance to optimize both reads and writes, allowing more simultaneous job runs, shortening the job queue and enabling significantly faster application run time to the user. The API integrates IME with the job schedulers and pre-stages / warms the cache for new jobs, accelerating first read.

IME: A Burst Buffer & Way Beyond

9

Game Changing Technology, Enabling Your Next Leap Forward

Introducing IME[®]

10 Technical Key Components and Operations

© 2015 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.

ddn.com

Where IME Helps

Resolving challenges, environments, key industries, workflows

Where IME[®] Helps

SYMPTOMS . . .

- Bursty I/O patterns
- I/O intensive, high bandwidth workloads
- Mal-aligned I/O HPC applications (that run significantly below line rate into the PFS and/or slow down the compute cluster)
- Regular checkpoint/restart operations (on apps that scale beyond 20% of the size of the cluster)
- Greenfield projects
- Limited power, space
- Exascale POC projects

NAME _____

B

PRESCRIPTION . . .

- Maximize time available for computation
- Enable predictable performance for SLAs

DATE

- Accelerate application runtimes and/or time to discovery/results
- Reduce checkpoint times by 10x
- Run more jobs in parallel
- Run analytics/processing/ modeling in real-time

Challenge of Bottlenecks At-scale

For Oil & Gas Companies

13

© 2015 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.

ddn.com

Challenge of Bottlenecks At-scale

For National Labs & Universities

I want	To eliminate "problem" apps	Provision performance with less hardware	Faster checkpoint/restart	
Challenges	 Entire cluster slows down Idle cluster time Scientists (not programmers) writing apps 	 Overprovisioning HDD capacity for performance Overprovisioning compute to make-up for I/O wait times Infrequent use of peak perf 	 Expensive compute Idle during checkpoint Writing checkpoints to scratch is time consuming & expensive Restart from HDD is slow 	
Where am I blocked?	 POSIX locking HDD latency Malformed I/O Ability/time to optimize apps 	 IOPS & bandwidth come from HDDs Inability to decouple capacity from performance Buying HDDs for "Peak" requirements 	 PFS & HDD latency Fragmented I/O patterns choke PFS 	
How will IME help?	 Eliminates "problem" apps Accelerates I/O Aligns fragmented I/O into stripes 	Lower latency and increased I/O performance mean less compute	 Accelerate Checkpoint Restart Checkpoints live in IME, no writes to scratch needed 	

14

Challenge of Bottlenecks At-scale

For Manufacturing

I want	Consistent, predictable performance	Fastest time-to-conceptFastest time-to-market	Maximize performance & ROI of my IT assets	
Challenges	 Maintaining SLAs Maximizing computational utilization Problem apps choking cluster 	 Higher resolutions Longer runtimes Idle cycles for people and compute while awaiting I/O No time/expertise to optimize problem apps 	 Limited cluster budget & growing performance demand Storage hardware sprawl (low density) 	
Where am I blocked?	Current PFS doesn't have enough bandwidth to satisfy bursty apps & I/O	Malformed I/O is creating PFS locking, bottlenecks	 Budget PFS bottlenecks Overprovisioning capacity for performance 	
How will IME help?	IME absorbs bursts with ease, by providing multiples of PFS performance w/ less hardware, cost	 IME's proximity to compute and SSDs reduce latency IME dynamically aligns fragmented I/O into striped writes 	With IME, applications once I/O bound no longer bring down cluster and PFS performance	

15

IME[®] How it Helps

Provisioning Performance with HDDsis Highly Inefficient

How Does IME[®] Help?

A more efficient way to provision IOPS and bandwidth than HDDs

STORAGE BANDWIDTH UTILIZATION OF A MAJOR HPC PRODUCTION STORAGE SYSTEM

• 99% of the time < 33% of max

 IME Reduces Storage Hardware
 Fewer systems to buy, power manage, maintain

IME separates the provisioning of peak & sustained performance requirements with greater operational efficiency and cost savings

19

20 Real World Results

ICHEC researchers benchmarked their I/O bound, 3D seismic imaging application against IME and Lustre. Processing a <u>100 MB seismic image requires 1 TB of data movement</u>. Typical surveys consist of 1000s of images. Therefore, <u>1 PB of data movement is expected by this application for a typical survey</u>.

How Does IME[®] Help?

The only open file system acceleration product that supports any system environment

IME is a non-vendor-captive software approach, providing much greater flexibility in how users can architect their environments and a wider selection of specialty and commodity hardware platforms & components

✓ Compute Vendor-Agnostic

- ✓ Storage Vendor-Agnostic
- ✓ Interconnect-Agnostic
- ✓ Flash Form Factor-Agnostic
- ✓ Application-Agnostic
- Deployment-Agnostic

21

How Does IME[®] Help?

Multiplies compute performance

With every minute IME saves on job runs, your site can now run more jobs on the same compute resources

IME Eliminates:

- Parallel file system locking, limitations & bottlenecks
- Storage hardware, consumed floorspace
- Latency driving a loss of compute resources
- A considerable portion of Checkpoint/restart downtime

Thank You!

Keep in touch with us

sales@ddn.com

@ddn_limitless

2929 Patrick Henry Drive Santa Clara, CA 95054

 $\begin{array}{c} 1.800.837.2298 \\ 1.818.700.4000 \end{array}$

company/datadirect-networks

