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« Growing popularity of NAND flash memory and SSD:
o High read/write performance
o Low power consumption

« SSD has changed the storage landscape on a wide
range of applications: from embedded devices to
data center.
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« The bridge between the host and the storage media.

Host
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Address Bad Block
Mapping Management

Wear Garbage
Leveling Collection

Flash
Management

Scheduling

Power Failure

Protection ... Others
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Minimize Maximize

Recovery Time Parallelism

CPU Overhead Garbage Collection Efficiency
Write Amplification Wear Leveling Efficiency
Data Loss

Latency
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« Parallelism
o Multi-plane operations (internal)
o Multi-channel architecture (external)

« Write amplification
o Garbage collection is the main contributors
o Write workloads

Flash Memory Summit 2016
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FlashMemory Parallelism

e Multi-channel interleaving

e Grouping blocks into a
superblock

+ D. Jung et al., “Superblock FTL: a superblock-based flash translation
layer with a hybrid address translation scheme,” ACM Transactions
on Embedded Computing Systems, vol. 9, no. 4, 2012

+ B. Peleato et al., "Analysis of trade-offs in v2p-table design for
NAND flash,” Asilomar 2012
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Superblock FTL: A Superblock-Based Flash

Translation Layer with a Hybrid Address
Translation Scheme
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ANALYSIS OF TRADE-OFFS IN V2P
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BLE DESIGN FOR NAND FLASH

Borja Peleato, Rajiv Agarwal and John Ciofft

Electrical Engineering Depantment
Stanford University
Stanford CA 94305

ABSTRACT

Flash memory uses relocate-on-write, also called out-of-place
write for reasons. Data files from the host are

In NAND flash-based starage systems, an intermediate software Laer called a Flash
Layer (FTL) is usually employed to hide the erase-before-write characteristics of
memary. We propose 4 novel superblock-based FTL scheme, which combines & sl
logical blocks into a superblock. In the proposed Superblosk FTL, superblocks are map)
granularity, while pages inside the superblock are mapped freely at fine granularity g
in several physical blocks. To reduce extra starage and flash memory operations,
mapying information is stored in the spare area of NAND flash memory. This hy
translation scheme has the Rexibility provided by fine-grain address translation. wi
the memory overhead to the level of coarse-grain address translation. Qur experim
show that the proposad FTL scheme significantly outperforms previous block-mapped
with roughly the same memory overhead.

Categories and Subject Descriptors: D. roting Systems|: Storsps Manag
andary storage; B.T.1 [Integrated cu-mns] Types and Design Styles—Memory fecl
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spread across several non-sequential NAND physical pages.
In order to mtrieve host data at a laker point a virtual-to-
physical address table mapping the files to their physical
addresses must be maintained. This process entails two basic
seps. The first is to divide the NAND physical space in a
hierarchical manner for efficiency of address lookup. The
second is to store the msulting address lookup table, also
called a virual-to-physical (VP) table in an efficient manner
on the flash. This paper explores different architectures for
constructing such (able and storing it, thereby charackerizing
the trade-off that they offer in terms of complexity, write
speed. and cndurance of the flash memory.

1. INTRODUCTION

NAND-flash has unique characieristics that pose challenges
to the SSD sysiem design. The basic unit of NAND phy sical
space is a block, consisting of a fixed number of pages, typi-
ally 64 pages of 4 KB each. A block is the elementary unit
for erase operations, whereas reads and writes are processed
in terms of pages. Before data can be writien (o a page (.,
the page is programmed with that data), the block must have
been erased. Mareover, NAND flash memories have a lim-
ited program-crase (PE) cycle count, o equivalently there is
a limit (o the numbcr of times information can be re-writien.

Flash memory uses relocate-on-write, also called out of
place write [8], mainly for performance reasons: If write-in-
place is used instead, Mash will exhibit high latency due to the
necessary reading, erasing, and re-programming of the entire
block in which data is being updated. However, relocate-on-
wrile rquircs maintaining a virtual-to-physical (V2P) table
mapping the files to their physical addresses. This process
entils two basic steps. The first is to divide the NAND phys-
al space in a hicrarchical manner for cfficiency of address
tookup. The second is to store the V2P tabk in an efficient
manner on the flash. The architecture used for construct
such table and storing it plays a significant rok in the ove:
performance of the memory.

process involving additional read and write operations [4].
This effect is known as wrile amplification and it reduces
both endurance and write throughput [6]. Different garbage
colkection policics result in different write amplification per-
formance. Here, endurance refers to the lifetime of the mem-
‘ory and write throughput refers to the rate at which incoming
host data is transfercd to Flash memony.

Tite
can be reduced by writing sequentially, since any file s then
condensed in a small number of blocks. Additionally, when
a file, or a portion thereof, occupies physically sequential
pages, it can be located using only its starting location and
length. As a result, writing sequentially would also reduce the
size of the virtual-to- physical address table (V2P-table) map-
ping the files 1o their physical addrsscs. However, spread-
ing the and
ing, since different blocks can be read in paralkel via dif-
ferent channels. Additionally, the latter provides beter error
‘protection: if a block gets cormupted o loscs information duc
to passage of time, the errors are spread across several files,
and hence any single block can be cormcted using a small
amount of redundancy for cach file.

Another important factor to consider is wear keveling. The
‘program anderase operations damage the dielectric barrier in
the Rash cells, until they rach a point in which they can no
longer store information reliably. When a certain number of
the blocks reach this point, the memory is considered dead If
asubsct of blocks arc programmedand crased more oficn than
the others they will suffer more damage and die earlier, effec-
tively decreasing the lifetime of the memory. In practice. it is
comman for a memory to store both cold data, which is very
rarely updated, and hot data, which is updated ofien. Blocks
storing hot data are programmed and erased more often than
those storing cold data. Wear keveling algorithms are there-
fore used to increase the memories” lifetime by occasionally
‘moving cold data hetween blocks. The amount of data that
needs to he moved during wear leveling, as well as how ofien
this needs to be done depends on the architectur: used. Wear

T Overpraisoning i defind s the diference beteen the totsl space in
the drive and the user-accessible space, normalived by the wer scxssible
space
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* Block management is based on the granularity of a

superblock.
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rlaory Superblock Management

* Pros:
o Superblock spans multiple channels for concurrent write.
o Block management overhead is reduced.
o Conductive to RAID 5 implementation.

e Cons:

o GC efficiency depends on data locality (hot/cold and
sequential/random data).

Flash Memory Summit 2016
Santa Clara, CA 9
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FlashMemory \\/rite Amplification
« Qver-Provisioning
» 1/O applications
« GC efficiency
« Data integrity writes

 Hot and cold data separation:
o Algorithm (internal)
o Host hints (external)
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Santa Clara, CA




\ 4

FashMemory Superblock GC

&

« Workload: 4K random write with 18% hot data.
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MNormailized Write Amplification (%)
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rashMemory Real \Workload Traces

SUMMIT

+ D. Narayana et al. “Write off-loading: practical power management for
enterprise storage,” ACM Transactions on Storage, Vol. 4 Issue 3. 2008.

usr User home directories
proj Project directories
prn Print server
hm Hardware monitoring
rsrch Research projects
prxy Firewall/web proxy
srcl Source control
src2 Source control
stg Web staging
ts Terminal server
web Web/SQL server
mds Media server

wdev Text web server

Flash Memory Summit 2016
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Write Off-Loading: Practical Power Management for Enterprise Storage

Dushyanth Narayanan

Austin Donnelly

Antony Rowstron

Microsaft Research Lid.
{dnarayan,austind,antr} @ microsofi.com

Abstract

In enterprise data centers power usage is a problem im-
pacting server density and the total cost of ownership,
Storage uses a significant fraction of the power budget
and there are no widely deployed power-saving solutions
for enterprise storage systems. The traditional view is
that enterprise workloads make spinning disks down in-
effective because idle periods ar too short. We ana-
Iyzed block-level traces from 36 volumes in an enter-
prise data center for one week and concluded that signif-
icant idke periods exist, and that they can be further in-
ng the readiwrite patterns using wrife
off-loading allows write rquests on
spun-down disks to be emporarily redirected to persis-
fent storage clsewhers in the data center.

The key challenge is doing this transpascntly and ef-
ficiently at the block level, without sacrificing consis-
wency or failure wesilience. We describe our write off-
loading design and implementation that achicves these
zoals. We cvaluae it by wplaying portions of our traces
on a rack-based westhed. Results show thae j ;vinning
disks down when idle saves 28-36% of energy, and write
off-loading further increases the savings w 45-60%.

1 Introduction

Power consumption is a major probkem for enterprise
data centers, impacting the density of servers and the to-
tal cost of ownership. This is causing changes in data
center configuration and management. Some compo-
nents aleady support power management features: for
example, server CPUs can use low -power states and dy -
namic clock and voltage scaling to reduce power con-
sumption significantly during idle periods.  Enterprise
storage subsystems do not have such advanced power

and consume a signi amount of power
in the data center [32]. An enterprise grade disk such as
the Seagate Cheetah 15K.4 consumes 12W even when

idle [26], whereas a dual-core Intel Xeon processor con-
sumes 24W when idle [14]. Thus, an idle machine with
one dual-core processor and two disks already spends as
much power on disks as processors. For comparison, the
13 core servers in our buildin, lata center have o total
of 179 disks, more than 13 rmachine on average.

would reduce pcah pcrform:moc sndlor capacity. The al-
ternative is to spin down disks when they arc not in use.
The traditional view is that idle periods in server work-
loads ar: too short for this to be effective [3. 13, 32]. In
this paper we present an analysis of block-level traces of
storge volumes in an enterprise data center, which only
partially supports this view. The traces are gathered from
servers providing typical enterprise services, such as file
servers, web servers, web caches, ete.

Previous work has suggested that main-memory
caches are effective at absorbing reads but not writes [4].
Thus we would expect at the storage kevel to see pen-
ods where all the traffic is write traffic. Our analysis
shows that this is indeed true, and that the request stream
is write-dominated for a substantial fraction of time.

This analy sis motivated a technique that we call write
aff-loading, which allows blocks writien to one volume
o be redirected to other storage elsewhere in the data
center. During periods which are write-dominated, the
disks are spun down and the writes are redirected, caus-
ing some of the volume’s s to be off-loaded. Blocks
are off-loaded temporarily, for a few minutes up to a few
hours, and are reclaimed lazily in the background after
the home volume’s disks are spun up,

Write off-loading modifics the per-volume access pat-
temns, creating idle periods during which all the volume's
disks can be spun down. For our traces this causes vol-
umes to be idke fru 79% of the time on average. The
cost of doing this is that when a read occurs for a non-
off-loaded block, it incurs a significant latency while the
disks spin up. However, our results show that this is rare.

12
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FlashMemory Data Classification £

* Logical block addressing (LBA):
o Frequency: hot/cold data
o Recency: workload changes

 Hot and cold data separation

Superblock Superblock Superblock

' Hot Data
LBA > Superblock: open & hot Superblock Superblock

Data | Data
Host ?| Classification | Superblock Superblock ‘ Superblock: dirty & GC !
i Cold Data E

Flash Memory Summit 2016
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RashMemory Host Hints: Other Interface

* Proposed by Samsung.

» A storage interface to inform (hint) SSDs
about the data.

* The host system opens “streams” for
different write requests.

« Data in a stream is written together to a
related physical NAND flash space and

separated from the data in other streams.

+ J. Kang et al. “The multi-streamed solid-state drive,”
Proceedings of 6" USENIX conference on Hot Topics in Storage and File Systems, 2014.

Flash Memory Summit 2016
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The Multi-streamed Solid-State Drive

Jeong-Uk Kang Jeeseok Hyun

Hyunjoo Maeng Sangyeun Cho

Memory Solutions Lah.

Memory Di

jon, Samsung Electronics Co,

Hwasung, Korea
E-mail: ju.kang@samsung.com

Ahbstract

This paper makes a case for the multi-streamed solid-
stare drive (§5D). It offers an inwitive storage interface
for the host system to inform the SSD about the expected
lifetime of data being written. We show through experi-
mentation with a real multi-streamed SSI prototy pe that
the worst-case update throughput of o Cassandra NoSQL
DB system can be improved by nearly 56%. We discuss
powerful use cases of the proposed SSD interface.

1 Introduction

NAND flash based solid-state drives (S3Ds) are widely
used for main storage, from mobile devices o servers o
supercompuiers, due o its low power consumption and
high performance. Most 38D users do not (have to) re-
alize that the underlying NAND flash medium disallows
in-place update; the illusion of random data access is of-
fered by the SSD-intemnal software, commonly referred
w0 as flash translation layer or FTL. The block device ab-
straction paved the way for wide adoption of SSDs be-
cause one can conveniently replace a HDD with an SSTY
without compatibility issues.

Unfortunately, maintaining the illusion of random data
access through the block device interface comes at costs.
Forexample, as the 81D is continuously written, the un-
derlying NAND Rlash medium can become fragmented.
‘When the FTL tries to reclaim free space to absorb fur-
ther write traffic, internal data movement operations are
incurred between NAND flash locations (ic., garbage
collection or GC) [6]. keaving the device busy and some-
times unabk: to properly process user requests. The re-
sultant changing performance behavior of a given SSD is
hard to predict or reason about, and remains an impedi-
ment to full-system optimization [1]

In order to address the problem from the roat, we pro-
pose and explore multi-streaming, an mterface mecha-
mism that helps close the semantic gap between the host
system and the SSD. With the multi-streamed SSD. the

host system can explicitly open “streams” in the SSD and
send write requests to different streams according to their
expected lifetime. The multi-streamed SSD then ensures.
that the data in a stream are not only written together to
a physically related NAND flash space fe.g.. a NAND
flash block or “erase unit”), but also separated from data
in ather streams. 1deally, we hope the GC process would
find the NAND capacity unfragmented and proceed with
no costly data movements.

In the remainder of this paper, we will delve first into
the problem of $5D aging and data fragmentation in Sec-
tion 2, along with previously proposed remedies in the
literature. Section 3 will explain our approach in detail
Experimental evaluation with a prototype SSD will be
presented in Section 4. Our evaluation looks at Cassan-
dra [7]. a popular open-source key-value store, and how
an intuitive data mapping to streams can significantly im-
prove the worst-case throughput of the system. We will
conclude in Section 3.

2 Background

21 Aging effects of SSD

88D aging [16] explains why the S5D performance may
gradually degrade over time; GC is executed more fre-
quently as the S50 is filled with more data and frag-
mented. Aging effects start to manifest when the “clean”
NAND flash capacity is consumed, and in this case, the
FTL must proactive | cover a sufficient amount of new
capacity by “crasing” NAND flash blocks before it can
digest new write data. The required erase operations are.
often preceded by costly GC; to make matters worse, o
NAND block, a unit of erase operation, is fairly large in
modern NAND flash memory with 128 or more pages in
it [15] When the SSD is filled up with mor: and mare
data_ statistically, the FTL would need to copy maore valid
pages for GC before each NAND Hash crase operation
This phenomenon is analogous to “segment cleaning™ of
alog-structured fike system [13] and is well studied

17
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Figure 2: The multi-streamed SSD writes data into a related NAND
flash block according to stream ID regardless of LBA. In this example,
three streams are introduced to store different types of host system data.

+ J. Kang et al. “The multi-streamed solid-state drive,”
Proceedings of 6" USENIX conference on Hot Topics in Storage and File Systems, 2014.
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Both the host system and the SSIV share 2 unigque stream
1D for cach open stream, and the host sysem augmen!
cach write with a proper stream 1D, A multi-s d
SSD allocates physical capacity carefully, to plz.EZm
in a stream together and not to mix data from djfferent
streams. Figure 2 illustrates how this can be acheved.
‘We helieve that the multi-stream interface/is abstract
enough for the host system o be able to fp, with con-
wvincing use cases and results (as discusspd in Section 4).
Furthermore, the level of information deliversd through
the interface is concrete enough for e SSD o optimize
its behavior with There are otherproposals to specify
write: data attributes, like accegd frequency [11] How-
ever, it is not straightforward, the SSD to derive data
Fictime. from the expected iéquency of data updates

32 Imp]ememﬂ,l{m

We implemented the proposed multi-stream interface on
the currently mafeted Samsung 840 Pro SSD [14]. Be-
cause 340 Pro i based on the SATA [l inieriace, we pig-
ayback streafi ID on a reserved field of both e gular and
commands as specified in the AT attached
and set [S]. Our multi-streamed SSD proto-
type girrently supports four streams (Stream 1 ta 4) on
top 4f the default stream (Stream ().
AVe modified the Linux kemel (3.13.3) to have  con-
At between an application and the SSD, through the file
/ system and the layers below. More specifically, an appli-
cation passes a stream 1D to the file system through the
fadvisze system call, which, in tumn, stores the stream [0
in the inode of the virtual file system. When dirty pages
are flushed into the SSD, or the application directly re-
quests  wrile operation with the direct VO facility, we
send along the wrile request the sieam 1D {that can be
retrieved from the associaked inede).

4 Evaluation

4.1 Experimental setup

To evaluae: the multi-stresmed SSD, we conduct ex,

iments that run Cassandra [7] (version 1.2.10), a widely
deployed open-source key value store, All experiments
were performed on o commodity machine with o quad-

core Intel i7-3770 34GHz processor.  We tumed off
power management for reliable measurements.

Cassandra optimizes 10 traffic by organizing its data
set in or append-only “sorted strings tables” (SSTables)
in disk. New data are first writien to a commit log
(CommitLog) and are put in a table in the main mem-
ory (MemTable) o they are insenied.  Contents in the
MemTable are flushed to a S5Tablke once they accumu-
late to a certain sive. Since S5Tables are immutable, sev-
cral of them are “compacted” periodically to form a new
(large) SSTable to reduce the space and time overheads
of maintaining many (fragmented) SSTables.  As the
compaction process repeats, valid data gmdunlly move
from a (small) S5Table 10 another in a different size tier.
‘We take into account how data are created and destroyed
in Cassandra when we map writes to streams.

Table 1 lists four different mappings that we examine.
Normal implics that all data are mapped to the default
stream (Stream (), equivakent to a conventional SSD with
no multi-streaming support and is the baseline configura-
tion. In Single, we scparate all data from Cassandra into a
stream (Stream 1). System data, not created by the work-
load itself, include the ext4 file system meta and jounal
data and still go to Stream 0. Multi-Log carves out the
Commitlog traffic to a separate stream, making the to-
tal stream count three (including the default stream). Fi-
nally, Mult-Data further separates S8Tables in different
tiers to three independent streams. Intuitively, 35Tables
in the same tier would have similar lifetime while S5Ta-
bles from different ters would have disparate lifetime,

For workloads, we employ the Yahoo! Cloud Serving
Benchmark (YCSB) [3] (0.1.4). We run both YCSB and
Cassandra on the same machine, not to be limited by the
1Gb Ethernet. In addition, we limit the RAM size to
2GB to accelerate SSD aging by increasing Cassandra’s
Aush frequency. The compaction throughput parameter
of Cassandra was medified from 16 MB/s to 32 MB/s, as
recommended by the community for 35D users.

4.2 Resulls

Figure 3(s) plots the normalized update throughput of all
mapping configurations studied. We introduce a Normal
configuration with the TRIM facility rurned off, to gain
insight about the impact of TRIM. We make the follow-
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FlashMemory Summary «

« PCle with NVMe enables higher performance SSDs

« FTL: parallelism and write amplification management is
critical
« Hot/cold data separation:
o Data classification: adjusting with write workloads
o Host hints: NVMe and other storage interfaces

 VIAVT6745 PCle/NVMe SSD controller with FTL turnkey
solution is the best option for high performance SSDs.
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