

Accelerating SSD & System
Development

with Test Automation
 Andy Tomlin

andy.tomlin@devicepros.net

Testing challenge includes wide and deep
problems

●  Problem created by large surface area to test:

●  Interface & protocol testing - large array of
command and interactions between outside world
and the device under test

●  Don’t go it alone, leverage as much as possible -

3rd party tools and labs

●  Read and write, data related test

●  Small surface area, but very deep due to
enormous state space

●  Requires white and black box approaches

Wide

D
eep

For speed of development, Test Automation is essential to solve both these challenges

Challenge of bring Flash based
storage products to market

Mapping systems:

•  Data Base, Filesystem, FTL all create indirections
between logical and physical locations of data

•  Depending on requirements this can be simple (L2P in
Client SSD) to complex (COW B-Trees in System)

•  Mapping is used to provide an array of interesting
features: Linear mapping, Volume management,
Versioning (Snapshots & Clones), Thin provisioning,
Dedup, Compression

All indirection systems end up creating two systems:

•  System for user data, System for meta data

•  These system must always be in synchronization from
user perspective to function correctly

These two systems create development and test complexity:

•  Solving power cycling challenge

•  Maturing datapath

Development phase

Continuous Integration Testing to Requirements Agile development methodology

Best practices for FW development lead to Agile Development processes, Continuous
integration, and requirements based testing. Rigor in testing optimizes TTM.
Automated testing increases equipment utilization, and enhances ability to find problems fast.

Why is power cycling difficult?

Flash State
Space

Operational
code creates
flash state

Initialization
code figures
out state

NP-Complete problem to prove
that operational code and
initialization code are in synch

Permutations of flash state effectively infinite

Operational
code creates
flash state

Initialization
code figures
out state

Can have 100% code coverage
in both sets of code – but does
not mean it works as the two
pieces of code interface through
infinite state space

System works by collapsing the states down into
smaller set of states through mutually understood rules

Problem is hard, but testing it is hard as well

How do you create ‘interesting’ scenarios?

•  Unit test? Error injection? State triggering?

When you perform test, how do you detect errors?

•  Failures that start up code recognises are easy

•  Ones that do not get detected during start up can
be very problematic (solve with read scan after
cycle with lba/version tagging in data field).
Possible to also add additional checking in model
environment

•  HW related failures need to be guaranteed to be
captured - eg Supercap didn’t hold up long enough

Time to loop can be long - especially for system (vs SSD)

Tests need to be regularly regressed

•  You’re never done, you can only achieve a level
of confidence that it should work in the field

•  For client SSD target 100K power cycles for
release, with 20% of them random / unexpected

•  For system solution, where cycle time is much
longer less cycles are practical

Must approach systematically, repeatably, and automated to
mature in 6 months

Holistic, layered approach is best solution

Code

Model

Unit
tests

Error
injection

State
Triggering

Code

System/HW

Unit
tests

Error
injection

State
Triggering

Automation Framework

Check-in
Test

Automated
Build
Regression

Nightly
Regression

QA Weekly
Regression

Release
Testing

Testing with behavioural
model can allow
additional coupling
between test and output

Data Path Testing
●  Data path testing is challenging for similar reasons as power cycling. The amount of

state permutations is effectively infinite

●  Key differences between data path testing and power fail are frequency of use (data
path code used every IO), and timing sensitivity (lots of things going on in parallel)

●  Key capability needed: Data tagging with lba, and version/timestamp that is tracked by
the test tool. Note that with larger storage systems this can be a hard problem in itself
just due to size. Techniques using/tracking hashes of timestamps can help solve size of
the data problem

Multi threaded operation

NVMe SSD’s and storage systems have higher performance requirements than can typically be
met with single CPU solutions.

Coherency between threads is difficult development problem and hard test problem.

Creating stress cases can be difficult and tests may be fragile, and have poor repeatability:

●  Best practice is to ensure that stress is measured & monitored within the automation
framework so that at least you can observe whether test is effective or not

●  Goal of repeatability is less achievable, observability is new target

Straight Foward

•  Straight Forward. Our company motto embodies

simplicity, efficiency, and transparency. We adopt “best
practices” ruthlessly enabling speed, security and
control as needed;

•  Led by storage industry veterans, Derrill Sturgeon and

Andy Tomlin. Based in Bay Area with development
center in Minsk, Belarus providing expertise in Test
Automation and Flash based systems to the Storage
industry;

Devicepros

•  Passionate about helping our customers achieve their

goals! We aim to delight our customers with our services,
not merely satisfy;

•  Excellence in communication is one of our top priorities.

Engineering Services requires robust and frank
conversations from inception through execution.

Contact:
andy.tomlin@devicepros.net
www.devicepros.net

