

SSDVision

Performance Assessment of an All-RRAM Solid State Drive Through a Cloud-Based Simulation Framework

Lorenzo Zuolo*

Michele Cirella, Cristian Zambelli, Rino Micheloni*, and Piero Olivo

Lorenzo Zuolo, Michele Cirella, Cristian Zambelli and Piero Olivo are with the with the Dipartimento di Ingegneria, Università degli Studi di Ferrara, via G. Saragat,1 - 44122 Ferrara (Italy) Lorenzo Zuolo, is also with SSDVision S.R.L., Via Dosso Dossi 11, 44122 Ferrara (Italy) Rino Micheloni is with Microsemi Corporation, Via Torri Bianche 1, 20871 Vimercate (Italy)

- The Flash Memory Summit take away is:
 - NAND-Flash based SSDs are ubiquitous and now they are also the most effective solution for highperforming mass-storage applications
 <u>This storage revolution is made possible thanks to</u>

...Numbers in the hyper-scale market: the need for storage capacity...

IHS Technology said:

"In 2017 more than 1Billion users will subscribe a cloud storage service"

Oracle said:

"In 2020 the amount of new digital data produced will be around 35000 Exabyte"

1Tbit chips

... The challenge: how to cover these numbers with NAND flash-based SSDs?

...Challenge accepted: memory vendors improved the bit density!

- New storage paradigms: SLC→MLC→TLC
- An aggressive technology scaling: 3X→2X→Mid-1X

The side-effects of the improved bit density in NAND flash memories

- 1. Memory vendors partially solved the need for storage capacity... but...
- 2. Changing the storage paradigm worsened the Read, Program, and Erase latencies
- the aggressive technology scaling shifted the RBER from 1x10⁻⁶ (of 3X SLC) to 1x10⁻² (of mid-1X TLC)
 - LDPC ECCs are needed which take too long to correct read data

Storage paradigm	Avg. read latency	Avg. program latency	Avg. Erase latency
SLC	25 µs	200 µs	1000 µs
MLC	45 µs 🚽	800 µs	2000 µs 🔶
TLC	85 µs	2200 µs	5000 µs

Technology node	Avg. RBER (BOL)	Avg. RBER (EOL)	Needed ECC
3X	1x10 ⁻⁶	1x10 ⁻³	BCH
2X	1x10 ⁻⁵	5x10 ⁻³	всн 🔶
Mid-1X	1x10 ⁻⁴	1x10 ⁻²	LDPC

- Final take away: the density/performance tradeoff
 - SSDs become no longer "high performing storage systems" when you need a high storage density!

The density/performance tradeoff: Is there any countermeasure?...

- A step back... What is the "holy grail" of storage?:
 - DRAM-like performance (latency and bandwidth) •
 - DRAM-like reliability •
 - NAND flash-like storage density •
 - NAND flash-like data non-volatility •

Storage-Class Memories (SCMs) seem to answer the question

- **Micron's 3D-Xpoint** .
- **Crossbar's RRAM** .
- **Everspin's MRAM** .
- Etc...

Flash Memory Summit 2016 Santa Clara, CA

http://www.techshout.com/hardware/2013/06/crossbar-unveils-rram-withhttp://www.innovationtoronto.com/2015/07/storage-technology-thats-1000-times-

- 1. If we follow the memory vendors claims' it seems that SCMs will become one the main storage layers in:
 - Datacenters
 - hyper-scale systems
 - high-performance computing (HPC)
 - Etc. ...
- 2. To do that... SCMs have to be fully compatible with traditional SSD architectures:
 - ONFI, Toggle, or DRAM-like interface
 - Plug 'n play with NAND flash memories (command set, timings, etc.)
 - Plug 'n play with SSD controller designs (internal organization, bus frequency, etc.)
- 3. Let's take an example of SCMs: RRAMs

Question is: can I build a All-RRAM SSD?

Flash Memory Summit 2016 Santa Clara, CA

\square	RRAM CHIP						
		0	NFI IN	TERFAC	CE		
		4 kE	3 page	REGIS	TER		
256 Bytes							
PLANE #0	PLANE #1	PLANE #2	PLANE #3	PLANE #4	PLANE #5	PLANE #6	PLANE #7
256 Bytes							
PLANE #8	PLANE #9	PLANE #10	PLANE #11	PLANE #12	PLANE #13	PLANE #14	PLANE #15

Chip Parameters	Configuration	
IO-Bus interface	ONFI	
IO-Bus speed	800 MT/s	
Native page size	1T-nR 256 Bytes	
Emulated page size	512-1024-4096 Bytes	
T _{READ} per Page	1 µs	

Data from real chip datasheet

...Let's do it: the "All-RRAM" SSD

- Unfortunately we do not have real RRAM chips...
 - · We do have the datasheet and all the specs, but no real silicon
- ... And we cannot spend months in developing an FPGA-based design for:
 - 1. Emulate the controller behavior
 - 2. Emulate the RRAMs behavior and timings (... this point could be very tricky...)
- We need numbers, and we need them now...
- Ok, no problem, we can simulate it but...
 - 1. Simulations have to be accurate
 - 2. We don't want to spend too much time in simulations
 - 3. We want to test the SSD in several different configurations
 - 4. We want to understand what are the "corner-case" working conditions

SSDExplorer: a cloud-based service for SSD simulation

- The world first cloud-based tool for SSD design-space exploration: www.ssdvision.com
- Cycle-Accurate (tuned on real HW)
- Reconfigurable
- **Fast** (up to 10 Million-transactions per day)

The strength: the simulation environment is in the cloud

All-RRAM SSD testing conditions: baseline (1)

- The question to answer: will an All-RRAM SSD outperform a NAND flashbased SSD?
- Remember: the main feature of SCMs is that they are fully compatible with traditional SSD architectures

Working assumptions are:	Parameters	Configuration
1. Use the same SSD controller configuration used in	Host Interface	PCIe Gen 2x8
traditional NAND-flash based SSDs	Host protocol	NVMe 1.2
 2. Change only the storage paradigm 3X-SLC NAND Flash 1X-MI C NAND Flash 	Host workload	4 kBytes 100% Random Read
1T-nR RRAMs	SSD Channels	16
3. Host queue depth is 32 (real application)	SSD Targets	8
4. <u>INTANIS USE ITE 4 INDUIES EITIUIAIEU page Size</u>	SSD size	2 TBytes

All-RRAM SSD testing conditions: baseline (2)

Memories characteristics	NAND Flash 3X-SLC	NAND Flash 1X-MLC	1T-nR RRAM
T _{RFAD}	25 µs	40 µs	1 µs
IO-Bus Interface	ONFI	ONFI	ONFI
IO-Bus Speed	800 MT/s	800 MT/s	800 MT/s
Page size	4 kB	4 kB	4 kB

The answer is: NO the All-RRAM SSD works like a NAND-based SSD

Any available optimization?

Flash Memory Summit 2016 Santa Clara, CA

Well the expected conclusion is:

The All-RRAM SSD should be

faster than any NAND-flash

Memory Optimized All-RRAM SSD: v1 (1)

- Let's do a step back...
- RRAMs are designed to work with a page size of 256 Bytes...
- But filesystems work with a 4 KBytes sector size
- RRAMs can emulate the 4 KBytes page but it is not a efficient solution
- The I/O transfer time takes a lot of time

What about reducing the data transfer time using RRAM chips with the Flash Memory Summit 2016 native 256 Bytes page size?

Optimized All-RRAM SSD: v1 (2)

- But how can we handle it?
 - 4 Kbytes from the host
 - Page-size of 256 Bytes
- Hint #1: the SSD controller has 16 channels
- Hint #2: 16 channels x 256Bytes = 4096Bytes
- Hint #3: the SSD controller has a DRAM buffer

Let's do it in the SSD controller!

- 1. Striping the host LBA across the 16 SSD channels
- 2. Rebuild the LBA in DRAM

- The quality metrics we assessed with SSDExplorer:
 - Bandwidth: kIOPS
 - Average latency: µs
 - Quality of Service (QoS): 99.99th percentile of the latency distribution
 - Host queue depth (QD): 1, 8, 16, 32
- <u>Expected result</u>: because of the 256 Bytes page size, the All-RRAM SSD should show high IOPs and low read latency
- <u>Result:</u> with respect to the traditional 4 kB page size mode (dashed lines), splitting the host transaction in 16 chunks of 256 Bytes (solid line) worsen the All-RRAM SSD performance
- <u>Why?:</u>
 - we are multiplying by 16 the number of commands the SSD controller internally manages

Optimized All-RRAM SSD: v2 (1)

Some considerations:

FlashMemory

- 1. The plug 'n play approach, (NANDs to RRAM + same SSD controller) was not a good solution
- 2. RRAM with 256 Bytes native page size + striping the LBAs across the 16 channels was not a good solution

New idea: what about co-design?

Co-design the RRAM page size with the SSD controller considering the whole memory system architecture

• How?

- Still striping the page across channels
- But using different RRAM page sizes

• E.g.:

- 16 Channels → 256 Bytes page size: TESTED
- 1 Channel → 4096 Bytes page size: TESTED (Baseline)
- 8 Channels → 512 Bytes page size
- 4 Channels → 1024 Bytes page size
- 2 Channels → 2048 Bytes page size

Optimized All-RRAM SSD: v2 (2)

QD = 1 is considered

Take away #1:

Flash Memory

 the optimum disk latency is achieved neither with the standard 256 Byte page size nor with the 4 KByte NAND-like mode.

Take away #2:

- There is a minimum in both the average latency and the QoS at a page size of 1 Kbytes
- 4 Channels striping → 1024 Bytes page size

Optimized All-RRAM SSD: v2 (3)

QD = 8, 16, 32 are considered

Take away #1:

Also at different QD, depending on what it is necessary to optimize either the average latency or the QoS, a page size of 1 Kbytes or 2 Kbytes seems to be the better choice

Take away #2:

These considerations hold on also for bandwidth

SSD Band

400

300 200 100

256

512

1024 RRAM page size [Bytes]

2048

4096

- 1. In this work we learned that:
 - RRAMs are good SCMs but not gold when used in SSDs
 - to build a high-performing SSD with RRAMs it is mandatory to co-design the memory architecture with the SSD controller
- 2. SSDExplorer helped us to identify the architectural bottlenecks and to design a more efficient solution
 - More than 100 different simulations were needed to find the optimal design point
- 3. ...These considerations can be applied to any SCM with the same characteristics of the tested RRAMs...

... So... What about Micron's 3D-Xpoint and the Intel Optane? (1)

NAND BASED NVME SSD

- Intel Optane, is the world first "All-SCM" 3D-Xpoint-based SSD
 - (Still not in mass production)
- 3D-Xpoint are used as NAND flash replacement
- ...Sounds familiar... The same approach we used in All-RRAM SSD
- At IDF Intel showed some performance
 numbers...

These numbers are achieved at Queue Depth (QD) = 1

LATENCY

58

3D XPOINT[™] BASED NVME SSD

70.300

LATENCY

(intel) ORACLE

Flash Memory Summit 2016 Santa Clara, CA

http://wccftech.com/intels-3d-xpoint-memory-featured-optane-ssds-optane-dimms-8x-performance-increase-conventional-ssds/

... So... What about Micron's 3D-Xpoint and the Intel Optane? (2)

All-RRAM SSD simulated in this work

- QD = 1 is used
- With a 4 Kbytes page size we have roughly the same latency of Optane...

These numbers are achieved at Queue Depth (QD) = 1

Flash Memory Summit 2016 Santa Clara, CA

http://wccftech.com/intels-3d-xpoint-memory-featured-optane-ssds-optane-dimms-8x-performance-increase-conventional-ssds/

So... What about Micron's 3D-Xpoint and the Intel Optane? (3)

- All-RRAM SSD simulated in this work
- Compared to SLC-MLC NAND flash
- QD = 32 is used

Flash Memory

Flash Memory Summit 2016 Santa Clara, CA

http://wccftech.com/intels-3d-xpoint-memory-featured-optane-ssds-optane-dimms-8x-performance-increase-conventional-ssds/

6 44X

LATENCY

(intel) ORACLE

achieved at Queue

Depth (QD) = 1

ATENCY PERFOR

Thanks

Q&A