

King of the Hill

Flash Memory Summit August 11th, 2016

Panelists

Mohamad El-Batal – Sr. Director of Architecture Seagate


 Tom Friend – Director of Industry Standards Toshiba America Electronic Components Inc.

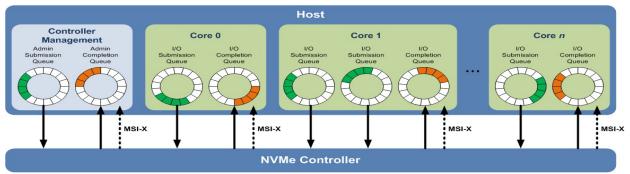
Fred Knight – Principal Engineer, CTO's Office, NetApp

Fred's New Bike

NVMe & All-Flash Arrays Flash Memory Summit 2016

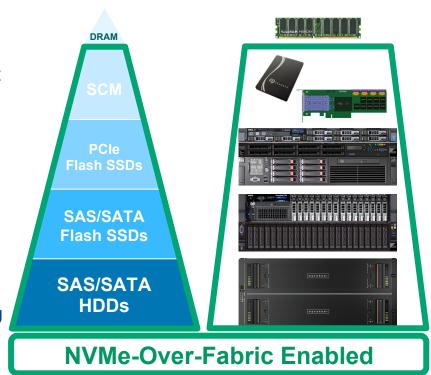
Mohamad El-Batal

Flash Memory NVMe – Architected for NAND & NVM


- NVMe is a standardized high performance software interface for PCIe SSDs
- Standardized register set, feature set, and command set, where there were only proprietary PCIe solutions before
- Architected from the ground up for NAND and next generation NVM
- Designed to scale from Enterprise to Client systems
- Developed by an open industry consortium with a 13 company Promoter Group, which is now grown in the 100's
- Continuously evolving standard to keep up with new market demand and new technology opportunities
- Latest additions:
 - NVMe 1.3 (forthcoming core release)
 - NVMe MI (Management)
 - NVMeoF (Fabrics)

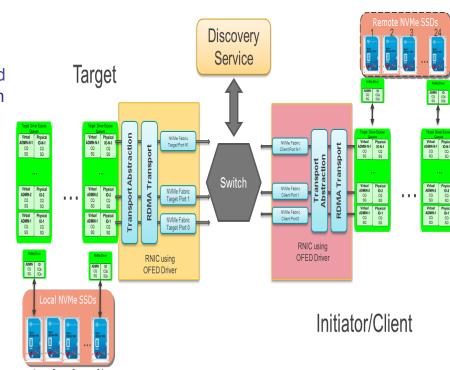
Memory NVMe Technical Overview

- Supports deep queues (64K commands per queue, up to 64K queues)
- Supports Controller Management through a separate Admin queue pairs
- Supports MSI-X and interrupt steering
- Streamlined & simple command set (13 required commands)
- Designed to scale for next generation NVM, agnostic to NVM type used
- Optional features to address target segment:
 - <u>Data-Center/Enterprise</u>: End-to-End data protection, Multi-Streams, Multi-Namespace, Persistent-Reservations, Dual-port, PRP/SGL, Controller-Memory-Buffer(CMB) ... etc.
 - <u>Client</u>: Autonomous power state transitions, Host-Memory-Buffer(HMB) for DRAM-Less support ... etc.



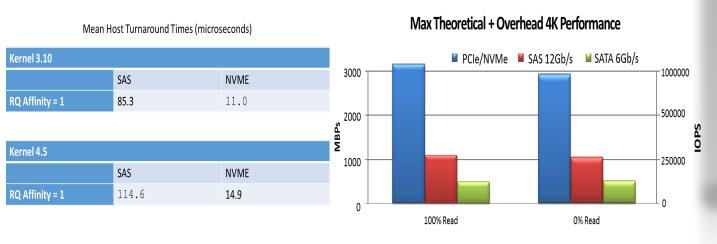
NVMe-over-Fabric Storage Hierarchy

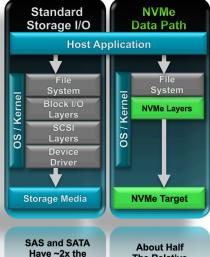
- Unified Fabric with NVMe protocol enables hardware automated I/O Queues and Interrupts with SGL support
- Inherent parallelism of multiple I/O Queues is exposed
- NVMe command and data-Integrity structures are transferred end-to-end
- Maintained consistency between fabric transports by standardizing definition
- Fabric Agnostic Ethernet, IB, FC ...etc, with common NVMe requirements
- Optional Ultra-low-latency NVMe-Direct zero-copy RDMA protocol data transfers with minimal Target CPU overhead



NVMf w/ NVMe-Direct

- Single/Multiple SSDs shared by many Hosts
- Scaling AFAs to Multi-Million IOPS with DAS like latency
- Establishing the communication path between the host and the NVMe subsystem through discovery and authentication
- Enabling the controller Admin Queue, and I/O Queue(s) to be setup and then utilized
- Reliable in-order delivery of command and response capsules between a host and NVMe subsystem
- Command capsule is created in client side and place in target's memory so that NVMe command is directly processed in NVMe SSD controller
- Optional P2P RDMA on NVMe controller to support Remote-DMA access of NVMe register sets
- Optional Controller-Memory-Buffer(CMB) NVMe SSD support to enable even faster NVMe-Direct command queue placement and local memory execution




Flash Memory Why NVMe is Better?

- NVMe delivers lowest latency overhead compared to any standard storage interface
- NVMe x4 PCIe-Gen3 U.2 & M.2 SSD's deliver > 3.2GB/s of Read/Write Performance
- NVMe Read & Write Performance ~ 3X of 12Gb-SAS ~ 6X of 6Gb-SATA
- Fabric Agnostic Ethernet, IB, FC ...etc, with common NVMf requirements

Optional NVMe-Direct RDMA protocol data transfers & CMB for Zero Target CPU/DRAM overhead

Best in class \$/IOPs JBOF & IBOF enclosure designs

Relative Stack

Latency of NVMe

The Relative

Stack Latency

Thank You! Questions?

Visit Seagate Booth #505

Learn about Seagate's ever-expanding portfolio of SSDs, Flash solutions and system level products for every segment

www.seagate.com/flash

SATA benefits

Lowest cost: (TCO)

- Initial (drives) (CAPEX)
- Initial (interface & cabling) (CAPEX)
- Power (watts per GB) (OPEX)

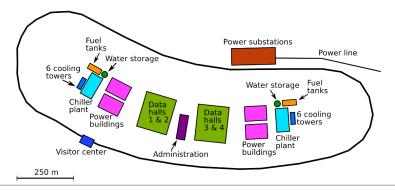
- Fits into array racks easily (CAPEX)
 - Mechanical and electrical design is easy and modular

Standard features

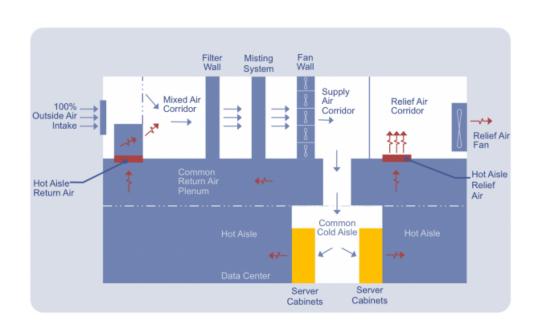
Best known and understood interface

SATA case study- HighperScale.com

Design goals:


- Scalable
 - Scale out- not up
 - Tune system for responsiveness
- Reliable
 - Add more data centers for availability
 - Redundant across locations, networks, power grid
- Low CAPEX:
 - Standard hardware (COTS)
 - Standard software (Open Source)
- Low OPEX:
 - Low power and heat
 - No licensing fees

Physical scale


Data Centers are large

Data Centers need power and cooling

Physical design

Open 19 or Open 21?

Standard components

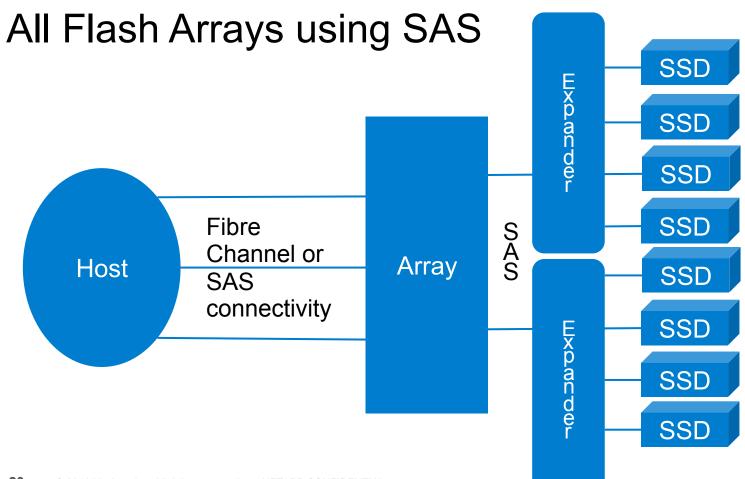
Software components

Storage in the large data centers

SATA SSDs for hot data

SATA SSDs or HDDs for warm data (Nearline)

SATA HDDs for cold data (Glacier)


All Flash Arrays using SAS

Frederick Knight
Principal Standards Technologist
8 Aug 2016

All Flash Arrays using SAS SSD SSD SSD SSD **Fibre** Channel or Array Host SSD SAS connectivity SSD SSD SSD

All Flash Arrays using SAS

- SAS is a modern interconnect
 - Actively being developed
 - New wires + new commands streams, BG control, hints
 - Highly Scalable (dev count, SAS expanders, 19" BP, 6M copper, 300M optical)
 - 3Gb, 6Gb, 12Gb, 24Gb speeds
- SATA is based on IDE
 - Used on the original IBM PC computers (minimal ongoing development)
 - Frozen at 6Gb
- NVMe is bleeding edge
 - Very active development (lots of rapid changes)
 - Reduced features and capabilities (today)
 - PCIe gen 4 backplane slots (~3" FR4, cables under development)

All Flash Arrays using SAS

- SAS is:
 - Full featured,
 - Scalable,
 - Stable,
 - Reliable, and
 - High Performance

The best choice for today.

SAS Value Proposition

- Reliability Error handling, robust Storage optimized channel models
- Performance Highest performance per lane w/capability for x2 & x4

Scalability – Scalable to 1,000s of devices

- Serviceability True hot-swap capabilities to add/remove media & cables
- Manageability Storage management built into the standard

Questions

