

Higher Performance - Lower Cost

How higher storage performance can enable drastically lower data center TCO

Cameron Crandall – Kingston Technology Sumit Puri – Liqid Inc.

Santa Clara, CA August 2016

HYPERSCALE GROWTH

Next 60 Seconds on the Internet:
ightarrow 27,800 Pictures uploaded to Instagram
ightarrow 208,700 Pictures uploaded to Facebook
\$83,000 Worth of product sold on Amazon
$\diamond~100$ Hours of video uploaded to YouTube

EXPLODING INFRASTRUCTURE COST

~75% of Data Center Spending is OpEx

Power, Cooling, Floor Space, People and Overhead consume majority of the IT budget

"Do More – With Less"

STORAGE EVOLUTION

High performance PCIe storage enables FSA performance from single device

ACHIEVING 1M IOPS AND 5GBS

Storage Performance: 1 Million IOPS and 5GB/s

The primary goal of this white paper is to study different methods of achieving 1M IOPS and 5GB/s of storage performance with SATA vs. NVMe SSDs.

NVMe Setup:

* NVMe setup based on direct connect Kingston EP1000 Gen3x8 PCIe NVMe SSD

* SATA setup based on Kingston SATA SSD and LSI HBA

Best Method to Achieve 1M IOPS and 5GB/s - SATA vs. PCIe

Lower cost and complexity enabled by higher performance PCIe

WHY PERFORMANCE MATTERS

Use Case Examples:

- Virtualization
- Video Streaming
- QoS Software Layer

HIGH PERFORMANCE VIRTUALIZATION

* Assumption: High-performance VM requires 50K IOPS

3x more infrastructure required to address same number of VMs

VIDEO STREAMING ENVIRONMENTS

Vendor A = 2.8 GB/s = ~9 HD Stream **2x more infrastructure required** to address same number of streams

HD Stream 24-bit @ 1080p @ 60 fps: 24× 1920x1080*60=2.99 Gbit/s

Vendor B = 7.2 GB/s = ~20 HD Stream

QUALITY OF SERVICE

QoS = Performance Rationing

- QoS methods are required when not enough performance is available from underlined HW
- With sufficient performance from underline hardware QoS can be removed/bypassed from architecture
- QoS adds significant cost & complexity Software Cost, Deployment/Management Cost, Premium Product

Higher performance can eliminate/reduce cost of QoS

POKEMON DEMANDS PERFORMANCE

Pokémon Go's server issues have been driving people wild all day - "Please come back later"

Problems at Pokémon Go

Pokémon Go problems last 24 hours

Infrastructure Unable to Meet Demand

KINGSTON'S NVME SSD

ULTRA PERFORMANCE SSD

ENTERPRISE HHHL NVME

	Vendor A	Vendor B	Vendor C	Kingston
Model	ххх	ххх	xxx	EP1000
Max Capacity	700 GB	2,000 GB	3,200 GB	7,800 GB
Interface	Gen 2.0 x8	Gen 3 .0 x4	Gen 3.0 x4	Gen 3.0 x8
Sequential Read 128KB	3,300	2,800	3,000	7,000
Sequential Write 128KB	630	2,000	1,600	6,200
Random Read 4KB	750,000	450,000	740,000	1,250,000
Random Write 4KB	95,000	90,000	140,000	275,000
Random Write 4KB (Peak)	150,000	400,000	450,000	900,000
P-fail	Yes	Yes	Yes	Yes

ENTERPRISE 2.5" NVME

	Vendor A	Vendor B	Vendor C	Kingston
Model	XXX	xxx	ххх	EP1000
Max Capacity	700 GB	2,000 GB	3,200 GB	3,920 GB
Sequential Read 128KB	1,800	2,800	3,000	3,600
Sequential Write 128KB	500	2,000	1,600	3,600
Random Read 4KB	430,000	450,000	740,000	900,000
Random Write 4KB	50,000	90,000	140,000	275,000
P-fail	Yes	Yes	Yes	Yes
Dual Port	No	No	No	Yes
SRIS	No	No	No	Yes

SUMMARY

Performance DOES matter

High Performance DOES drive lower TCO

Performance is fundamental to "do more – with less"

How can higher performance impact your business?