
 Advanced Test Automation
and Analytics

 Derrill Sturgeon
derrill.sturgeon@devicepros.net

Testing includes wide and deep problems

●  Problem created by large surface area to test:

●  Interface & protocol testing - large array of
command and interactions between outside world
and the device under test

●  Don’t go it alone, leverage as much as possible -

3rd party tools and labs

●  Read and write, data related test

●  Small surface area, but very deep due to
enormous state space

●  Requires white and black box approaches

Wide

D
eep

Test Automation is essential to solve both these challenges

If test results look like this

Or even like this

You are probably not too worried about test
effectiveness

But for test results like this

It is not obvious how to distinguish between high
product quality and poor tests.

•  Evaluating Test Effectiveness

•  What does stress look like?

•  When to measure stress

•  Implications to an effective Test Automation System

Using Stress metrics as a quantitative feedback

Evaluating test effectiveness
•  Specific Feature tests: Intent is clear and focus is relatively narrow. Code review is likely to shed light on

how comprehensive the test is. With some effort, effectiveness can be established.

•  Power cycle tests: More difficult since state space is large and preconditions may not be trivial and cycle
time is relatively long.

•  Access pattern tests: Similar to power cycle in terms of state space and setup time.

•  Random IO: Difficult to evaluate quantitatively. But it is a mistake to assume all (so called) random
techniques have similar effectiveness. Random IO is highly effective on immature codebases but reaches
plateau. Inefficient for issues that require an elaborate set of preconditions.

Quantitative stress metrics can remove a lot of the guess work.

•  Complex code paths

•  Exception handling

•  Low memory conditions

•  Low stack space, high stack depth

•  Saturated performance (IOPS/latency)

•  ...lots of other things design specific states and events

 What does stress look like?

 Examples
Great tests cause stress and it is objectively
measurable. Imagine two tests that run for 1 hour:

•  Test A causes 30 GC events and 3 file
system compactions. Several GC events
occur while stack depth is extreme.

•  Test B causes 3 GC events and 0 file
system compactions. Stack depth is
moderate throughout the test.

•  Both tests result in a PASS outcome. But, is
there any doubt about which of these tests
gives you more confidence?

●  CPU Utilization
●  Free Memory
●  Command Queue Depth
●  Latency Outliers

●  Garbage Collection Triggers
●  Throttling
●  Internal Queue Depth
●  Error Rate

●  ECC Failure
●  Algorithm specific code path
●  Design specific trigger
●  e.g. rare metadata operation

G
en

er
ic

Sp

ec
ifi

c

Never (seems to be what
most people do)

•  No way to compare
relative effectiveness of
tests

•  Given scarcity of target
hardware, reduces
chances of product
success

When to measure stress

During Test Development

•  Evaluation of stress
indicators while tests
are under development
will result in greatly
improved effectiveness

•  Ineffective tests never
make it to the lab

Continuously

•  Ability to detect when
changes in target code
reduce test effectiveness.
Can respond quickly with
new tests rather than having
false sense of security from
ineffective passing results.

Web Frontend Analytics Integrations

Networked
File Storage

C
lie

nt

 S
er

ve
r

Database Scheduler Backend

Automation Agent

Test

Test Framework

Device Under Test

Stress Measurement

Example stressors

Automation Overview

Requirements Management Integration

●  Executable Test Plan documents

●  Traceability from Requirements to Test Planning to Test Execution to
Results to Issue Tracking and Releases.

●  Select testing focus by Requirements. Useful in development stages.

●  Associate test runs and failures with requirements

●  Monitor test stress by requirement

Straight Forward

•  Our company motto embodies simplicity,
efficiency, and transparency. We adopt best
practices ruthlessly enabling speed, security
and control as needed;

•  Led by storage industry veterans, Derrill

Sturgeon and Andy Tomlin. Based in Bay Area
with development center in Minsk, Belarus
providing expertise in Test Automation and
Flash based systems to the Storage industry;

Devicepros

•  Passionate about helping our customers achieve

their goals! We aim to delight our customers with
our services, not merely satisfy;

•  Excellence in communication is one of our top

priorities. Engineering Services requires robust
and frank conversations from inception through
execution.

Contact:
derrill.sturgeon@devicepros.net

