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Outline

1. Overview
2. Building Flash Models using Logistic Regression.  
3. Storage Object classification
4. Storage Allocation recommendation engines for elastic storage systems.
5. Building an end-to-end model
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Overview
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What is Machine Learning?
 AI: capability of a machine to imitate intelligent 

human behavior. (Artificial general intelligence 
(AGI)-not yet there,  Artificial narrow  intelligence 
(ANI)- specific tasks such as playing GO, playing 
chess, self-driving cars)

 Machine learning: subset of AI. Algorithms to 
analyze data to make and improve the decision 
making process. 

 Formal Definition: A computer program is said 
to learn from experience E with respect to some 
class of tasks T and performance measure P if 
its performance at tasks in T, as measured by P, 
improves with experience E.

 Deep Learning : Subset of Machine Learning.  
Analyze data using multiple layers of abstraction.  
Examples are Convolutional Neural Networks, 
Recurrent Neural Networks etc.
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Machine learning techniques

Machine 
Learning

Supervised

Classification

Regression

Unsupervised

Clustering

Anomaly 
Detection

Reinforcement

 Supervised Learning involved 
constructing trained models 
with known input data and 
output data.

 Unsupervised Learning finds 
patterns within data about 
which nothing is known prior. 

 Reinforcement learning is a 
reward based learning where 
the algorithm learns to make 
specific decisions based on 
broader guideline.8/7/2017
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Supervised vs Unsupervised 

SUPERVISED

 Evidence Based Prediction
 Takes a known set of input 

data and responses to 
predict responses to new 
input data.

 Classification - discrete 
responses

 Regression - continuous 
responses

UNSUPERVISED

 Draw inferences from data 
sets consisting of input data 
without strictly labelled 
responses.

 Clustering- analyze data to 
find patterns and groupings
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Algorithms 

Supervised Unsupervised Reinforcement
Classification Regression Clustering 

Logistic Regression
k Nearest Neighbor

Neural Networks
Support Vector 

Machines
Bayesian Network

Decision Tree

Linear Regression
Logistic Regression

Support Vector 
Regression

k Means
Mixture Models
Expectation–

Maximization (EM) 
algorithm

Belief Propagation
(pre-processing techniques: 

Principal component analysis,
Independent component analysis,
Non-negative matrix factorization,

Singular value decomposition)

Value-based
(Q-learning, real-

time dynamic 
programming)
Policy-based 
(Actor-Critic 
Algorithm)

Model-based
(applied for games such as Chess 
and GO where rules of game are 

known and model is perfect)
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Flash Model and 
Parameter 
Optimization
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Flash Parameter Optimization

 Device Manufacturers tune the flash parameters to achieve reasonable 
specification for broad

 However it is possible to optimize the flash parameters based on the 
operating state of the flash memory.  

 Advantage of flash parameter optimization: Improve the flash 
endurance.

 How ever the challenge is that many registers  has dependencies. It is 
critical to determine a set of register settings that satisfy all the criterion.
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Logistic Regression to build 
Flash Models

 Why use logistic regression?
 Estimation by maximum likelihood
 Interpreting coefficients
 Hypothesis testing
 Evaluating the performance of the model 
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Model Building
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The main approaches are:
•Forward selection, which involves starting with no variables in the model, 
testing the addition of each variable using a chosen model fit criterion, 
adding the variable (if any) whose inclusion gives the most statistically 
significant improvement of the fit, and repeating this process until none 
improves the model to a statistically significant extent.
•Backward elimination, which involves starting with all candidate variables, 
testing the deletion of each variable using a chosen model fit criterion, 
deleting the variable (if any) whose loss gives the most statistically 
insignificant deterioration of the model fit, and repeating this process until no 
further variables can be deleted without a statistically significant loss of fit.
•Bidirectional elimination, a combination of the above, testing at each step 
for variables to be included or excluded.
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Model Building

8/7/2017

Kiran Gunnam, Flash Memory Summit 2017

12Kiran Gunnam, Flash Memory Summit 2017



Why use logistic regression for Flash 
Models?

 There are many important research topics for 
which the dependent variable is "limited." 

 There are several independent variables and 
combinations of independent variables (flash 
device registers) affect the dependent variable 
(flash page error)

 Binary logistic regression is a type of regression 
analysis where the dependent variable is a 
dummy variable: coded 0 (error) or 1(no error)
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The Linear Probability Model

In the OLS (ordinary least squares (OLS) or linear least squares 
regression): 
Y = γ +  ϕX + e ; where Y = (0, 1)

 The error terms are heteroskedastic
 e is not normally distributed because Y takes on only two values
 The predicted probabilities can be greater than 1 or less than 0
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More:
 The logistic distribution constrains the estimated 

probabilities to lie between 0 and 1. 
 The estimated probability is:

p = 1/[1 + exp(-α - β X)] 

 if you let α + β X =0, then p = .50 
 as α + β X gets really big, p approaches 1 
 as α + β X gets really small, p approaches 0

8/7/2017

Kiran Gunnam, Flash Memory Summit 2017

15Kiran Gunnam, Flash Memory Summit 2017



Comparing LP and Logit Models

0

1

LP Model

Logit Model
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Maximum Likelihood Estimation 
(MLE)

 MLE is a statistical method for estimating the 
coefficients of a model.

 The likelihood function (L) measures the 
probability of observing the particular set of 
dependent variable values (p1, p2, ..., pn) that 
occur in the sample: 

L = Prob (p1* p2* * * pn)
 The higher the L, the higher the probability of 

observing the ps in the sample. 
8/7/2017
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MLE

 MLE involves finding the coefficients (α, β) that makes the log of 
the likelihood function (LL < 0) as large as possible 

 Or, finds the coefficients that make -2 times the log of the 
likelihood function (-2LL) as small as possible

 The maximum likelihood estimates solve the following condition: 

{Y - p(Y=1)}Xi = 0

summed over all observations, i = 1,…,n
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Interpretation

 An interpretation of the logit coefficient which is usually more 
intuitive is the "odds ratio"

 Since:

[p/(1-p)] = exp(α + βX)

exp(β) is the effect of the independent variable on the "odds ratio"
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Storage Object  
Classification
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Storage Object Classes
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Architecture overview of self-
learning
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Source: http://repository.cmu.edu/pdl/69/
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Features
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Example Data and Tree
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k  Nearest Neighbor
 Three things are required

• Feature Space (Training Data)
• Distance metric - to compute distance 

between records.
– Euclidean Distance

– 𝑑𝑑 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 = ∑𝑘𝑘(𝑥𝑥𝑖𝑖,𝑘𝑘 − 𝑥𝑥𝑗𝑗,𝑘𝑘)2

– Manhattan Distance
– 𝑑𝑑 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 = ∑𝑘𝑘 𝑥𝑥𝑖𝑖,𝑘𝑘 − 𝑥𝑥𝑗𝑗,𝑘𝑘

• The value of k – the number of nearest 
neighbors to retrieve from which to get 
majority class.

 Choosing the value of k:
• If k is too small, sensitive to noise points
• If k is too large, neighborhood may include 

points from other classes
• Choose an odd value for k, to eliminate ties
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x

f(x)

k=4

k=11
k=17

k=4 the unknown purple symbol belongs to red square class
k=11 the unknown symbol belongs to yellow diamond class
K = 17 it belongs to the yellow diamond class still.
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More Distances: Quantitative Variables
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k  Nearest Neighbor
 The straightforward algorithm has a cost of 

O(nlog(k)), not good if the dataset is large.
 We can use indexing with k-d trees as 

follows
 For eg. We have the following training data
 {(1,9),(2,3),(4,1),(3,7), (5,4), (6,8), (7,2), 

(8,8), (7,9), (9,6)}
 Build a K-D tree

• Pick a dimension, find median, split data, 
repeat. 

 Find nearest neighbors for new point (7,4)
• Find region contacting (7,4)
• Compare to all point in region
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Decision Trees

 Approximation of discrete functions by a decision tree. In 
the nodes of trees are attributes and in the leaves are 
values of discrete function.

 Deriving a tree
 Until each leaf node is populated by as homogeneous a 

sample set as possible: Select a leaf node with an 
inhomogeneous sample set. Replace that leaf node by a 
test node that divides the inhomogeneous sample set 
into minimally inhomogeneous subsets, according to an 
entropy calculation.
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Using Boosted Decision Trees
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 Boosting means that each tree is dependent on prior trees, and 
learns by fitting the residual of the trees that preceded it. 

 Flexible: can deal with both continuous and categorical variables
 How to control bias/variance trade-off

• Size of trees
• Number of trees

 Boosting trees often works best with a small number of well-designed 
features

 Boosting “stubs” can give a fast classifier
 supervised learning method and needs labeled dataset
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Allocation recommendation engines
in Elastic Storage Systems

8/7/2017 30



Block diagram of a storage 
allocation system
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More on storage allocation
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K-means Clustering for Storage
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An unsupervised clustering algorithm
“K” stands for number of clusters, it is typically a user input to 
the algorithm; some criteria can be used to automatically 
estimate K
It is an approximation to an NP-hard combinatorial optimization 
problem
K-means algorithm is iterative in nature
It converges, however only a local minimum is obtained
Works only for numerical data
Easy to implement

Source: Nilanjan Ray
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K-means: Setup
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x1,…, xN are data points or vectors of 
observations

Each observation (vector xi) will be 
assigned to one and only one cluster

C(i) denotes cluster number for the ith
observation

Dissimilarity measure: Euclidean 
distance metric

K-means minimizes within-cluster 
point scatter:
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where

mk is the mean vector of the kth cluster

Nk is the number of observations in kth cluster
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K-means Algorithm
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For a given cluster assignment C of the data points, compute 
the cluster means mk:

For a current set of cluster means, assign each observation 
as:

Iterate above two steps until convergence
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K-means clustering example
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How to build an end 
to end application
UNDERSTANDING CHALLENGES AND SELECTING RIGHT 
MACHINE LEARNING ALGORITHM, DATA 
PREPROCESSING, EVALUATING MODEL
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CHALLENGES IN MACHINE 
LEARNING
 Heterogeneous Data

• Dataset could have images, text and sensor signals as 
composite data. 

 Preprocessing of data
• Numeric datasets could have data lying in different data 

ranges and would require to be normalized before they are 
used. 

 Picking the best suitable model
• Based on the kind of application we are dealing with we need 

to pick a suitable algorithm. This decision may not be very 
intuitive. 
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Selecting an algorithm
 Selecting a machine learning 

algorithm deals with having insight 
about the kind of data with which we 
are dealing. 

 If we know the nature of the data and 
need to make a future prediction then 
we should select supervised machine 
learning algorithms. 

 If we do not know the nature of the 
data would like to discover the 
patterns within it we should select an 
unsupervised machine learning 
algorithms.

8/7/2017

Kiran Gunnam, Flash Memory Summit 2017

39

Nature of data 

Supervised Unsupervised Reinforcement

Classification

Regression

known unknown unknown



The perfect classification algorithm
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 Objective function: encodes the right loss for the 
problem

 Parameterization: makes assumptions that fit the 
problem

 Regularization: right level of regularization for amount 
of training data

 Training algorithm: can find parameters that maximize 
objective on training set

 Inference algorithm: can solve for objective function in 
evaluation

Kiran Gunnam, Flash Memory Summit 2017



Selecting Model

Try simple classifiers first

Better to have smart features and simple classifiers than simple features 
and smart classifiers

Use powerful classifiers if more training data is available (bias-variance 
tradeoff)
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Bias-Variance Trade-off
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• Models with too few 
parameters are 
inaccurate because of a 
large bias (not enough 
flexibility).

• Models with too many 
parameters are 
inaccurate because of a 
large variance (too much 
sensitivity to the sample).

Source: D. Hoiem
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Bias-Variance Trade-off
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E(MSE) = noise2  + bias2 + variance

See the following for explanations of bias-variance (also Bishop’s “Neural 
Networks” book): 
•http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

Unavoidable 
error

Error due to 
incorrect 

assumptions

Error due to 
variance of 

training samples

Kiran Gunnam, Flash Memory Summit 2017
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Bias-Variance Trade-off
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Effect of Training Size
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Regularization

 When the model fits the training 
data but does not have a good 
predicting performance and 
generalization power, we have an 
overfitting problem.

 Regularization is a technique used 
to avoid this overfitting problem. 

 The idea behind regularization is 
that models that overfit the data 
are complex models that have for 
example too many parameters.

8/7/2017

Kiran Gunnam, Flash Memory Summit 2017

46
Source: datanice

Kiran Gunnam, Flash Memory Summit 2017



Data Preprocessing
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Data Pre-processing
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 Data Cleaning
• Correct bad data, filter some incorrect data out of

the data set and reduce the unnecessary detal of
data.

 Data Transformation/normalization/Feature scaling
• Feature scaling is a method used to standardize the

range of independent variables or features of data.
Some methods are

Kiran Gunnam, Flash Memory Summit 2017



Model Assessment 
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If we are in a data-rich situation, the best approach for both model 
selection and model assessment is to randomly divide the dataset into 
three parts: training set, validation set, and test set.

The training set is used to fit the models. The validation set is used to 
estimate prediction error for model selection. The test set is used for 
assessment of the prediction error of the final chosen model.

A typical split might by 50% for training, and 25% each for validation and 
testing.

Source: Nathan Bastian
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Resampling methods –a simple list

 The validation set approach,
 Leave-one-out cross-validation, and K-fold cross-validation.
 The bootstrap method for assessing statistical accuracy.

 Please see http://tinyurl.com/ybojkt9f
 And http://tinyurl.com/y8oxwq9s
 For more details.
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Thanks!
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