

FPGAs in Flash Controller Applications

David McIntyre

DSMcIntyreConsulting@gmail.com

Data Center Trends

- Hyper Converged Infrastructure
 - Integrated Compute/Storage/Networking
 - Massive interconnectivity
 - Good for Exchange, Oracle, SQL databases
 - Software managed virtualized resources

Hyper Scale

- Independent scaling of compute and storage resources
- Good for elastic workloads, e.g. Hadoop, Cassandra, noSQL
- Also software managed

Data Center Trends

Storage

- Convergence of RAM/cache and SCM
- All flash and hybrid arrays
- Persistent memory cache
- Compute
 - GPU, TPU and FPGA accelerators

Networking

• Low latency, high performance RDMA networks

Hybrid Cloud

- For lease and on premises-equipment
- Deployment Options, e.g. OpenStack and Docker

Hyperscaler Priority

Hyperscale in 2020

By 2020,	Today:	
47%	of all data center servers	21%
68%	of all data center processing power	39%
57%	of all data stored in data centers	49%
53%	of all data center traffic	34%
alialia cisco	© 2016 Cisco and/or its affiliates. All rights reserve	ed. Cisco Confidential

Flash controllers must support hyperscale requirements (latency, performance/watt, endurance, reliability)

Flash Memory Summit 2017 Santa Clara, CA

DS McIntyre Consulting LLC

Flash Memory Summit

Santa Clara, CA

Amazon

- AWS cloud service upgraded with FPGA leasing option to support HPC vertical markets (Big Data, Video analytics, Financial, Genomics, Security)
- Combines machine images with FPGA images to accelerate specific routines call out by the customer
- > Development tools and resources with be critical for success

Facebook

- Particular focus on video analytics to search for human attributes (facial characteristics, unique signatures)
- Nearly one billion searches in <5 sec</p>
- Close to human recognition performance on frontal views
- Yosemite sleds support single socket Xeon-D and FPGA/GPU
- Optimized performance/Watt rack density

FPGA Benefits for Data Centers

Processing Options

Technology scaling favors programmability and parallelism

Technology Tradeoffs

Data center metric is performance/watt

The proper balance of performance and efficiency while maintaining flexibility to support data center applications Flash Memory Summit 2017 Santa Clara, CA

FPGA Architecture

- Massive Parallelism
 - Millions of logic elements
 - Thousands of 20Kb memory blocks
 - Thousands of DSP blocks
 - Dozens of High-speed transceivers
 - SOC processing
 - Optics
- Hardware-centric
 - VHDL/Verilog
 - Synthesis
 - Place&Route

GPU Offload Advantage

Control	ALU	ALU
	ALU	ALU
ache		

- * Low compute density
- * Complex control logic
- * Large caches (L1\$/L2\$, etc.)
- * Optimized for serial operations
 - Fewer execution units (ALUs)
 - Higher clock speeds
- Shallow pipelines (<30 stages)
- * Low Latency Tolerance
- * Newer CPUs have more parallelism

- * High compute density
- * High Computations per Memory Access
- * Built for parallel operations
 - Many parallel execution units (ALUs)
 - Graphics is the best known case of parallelism
- Deep pipelines (hundreds of stages)
- High Throughput
- * High Latency Tolerance
- * Newer GPUs:
 - Better flow control logic (becoming more CPU-like)
 - Scatter/Gather Memory Access
 - Don't have one-way pipelines anymore

Flush Memory Summit FPGA Comparison Continued

Traditional CPU

FPGA

Network ASIC

FLEXIBILITY 🗯

Inference Workloads

■ Tesla C2070 ■ Intel Xeon E5-2700 ■ Tesla K20Xm ■ Stratix V ■ Intel MIC 7100 ■ Intel i5-2400 Courtesy Virginia Tech

- Stencil: Memory bound, simple and synchronized compute blocks
- **GEM:** Matrix multiplication

Technology Comparison

Technology	Pros	Cons
CPU	Well established products	 Limited cores for parallel processing Power consumption
FPGA	Heterogeneous parallel processing Performance/Watt Flexibility	 Rudimentary development environment Inefficient per unit costing
GPU	Same task parallel processing Developer ecosystem	Power consumptionLeading variable types
ASIC	Highest Performance	 High NRE Custom design
ASSP	Custom Performance	Limited functionality

Flash Controller Challenges

- Error Correction
 - LDPC, BCH
 - Error correction costs increasing
 - Limited endurance (lifetime writes)
 - Hybrid correction schemes
- Storage over PCIe
 - NVMe and NVMeF
 - PCle Gen 4
- Cache technologies
 - MRAM (Magneto Resistive)
 - PCM (Phase Change)
 - ReRAM (Resistive)
 - NRAM (Carbon Nanotube)

Price/Performance Gaps in Storage Technologies

Memory Hierarchy

CPU Cache Access Latencies in Clock Cycles

Persistent Friend or Foe

- Intel/Micron Xpoint Claimed Attributes vs. NAND
 - Performance (10X)
 - Endurance (1000X)
 - Latency (1/1000X)
 - Byte addressable

≻Cost (5X)

Opportunity for NAND to support load/store-driven data center applications (NVDIMM-F and NVDIMM-P)

FPGA Utilization across Data Centers

Point and SOC Solutions

- Application Acceleration
- Embedded Processing
- I/O Protocol Support
- Memory Control
- Compression
- Security
- Port Aggregation & Provisioning

Flash Controller Design Challenges

Emerging memory types

- ONFI 4.0, Toggle Mode 2.x
- PCM, MRAM
- DDR4

Controller Performance Options

- Write back cache, queuing, interleaving, striping
- ECC levels
 - BCH, LDPC, Hybrid
- FTL location- Host or companion
- Data transfer interface support
 - NVMe, NVMeF, PCle Gen 3/Gen 4, optics
 - Open Channel

2

Error Correction Overview

Driving Factors for New ECC

- Increasing Bit errors in NAND Flash
- Soft error occurrences
- Decrease in write cycles
- RS, BCH overhead for data and spare area
- Increase use of Metadata in file systems
- Correction Overhead
- Gate count
- Requirement for no data loss

Comparing ECC Solutions

Features	BCH	LDPC
Gate Count	High	Mid
Latency	Low	Medium
Tuneablity	low	high
Soft Data	no	high
Data Overhead	high	low

Flash Memory Summit Flash Controller Support

IP	10	Speed	Logic Density	Comments
ONFI 3.x	40 pins/ch	400 MTps	5KLE/ch	NAND flash control, wear leveling, garbage collection
Toggle Mode 2.x	40 pins/ch	400 MTps	5KLE/ch	Same
DDR3	72 bit	1066 MHz	10KLE	Flash control modes available for NVDIMM
PCM			5KLE	PCM- Pending production \$
MRAM			5KLE	MRAM- Persistent memory controller
BCH			<10KLE	Reference design
PCIe	G3x8	64Gbps	HIP	Flash Cache

PCI Express Support

PCIe Mode	Thruput (GT/s per lane)	Production
Gen 2	5.0	Now
Gen 3	8.0	Now
Gen 4	16.0	2018

Note:

1. LMI: Local Management Interface

2. DPRIO: Dynamic Partial Reconfigurable Input/Output

Hardened IP (HIP) Advantages

- Resource savings of 8K to 30K logic elements (LEs) per hard IP instance, depending on the initial core configuration mode
- Embedded memory buffers included in the hard IP
- Pre-verified, protocol-compliant complex IP
- Shorter design and compile times with timing closed block
- Substantial power savings relative to a soft IP core with equivalent functionality

Flash Cache Controller Examples

- Multi Channel Controller
 - Single to multi Flash channel capability
 - Basic NAND development platform
 - Provides High Speed
 ONFI & Toggle NAND
 PHY
 - ECC of 8 and 15 bits of error correction
- Single Channel Controller

SSD Controller in FPGA

SSD Scale Out over Fabrics

NVMeF breaks through local NVMe barrier and supports low latency

NVMeF approaches NVMe Performance

Hybrid RAID System - Persistent DRAM and Flash Caches

Hybrid RAID System - PCIe Switch Centric

Flash Storage Arrays

Target Application: Enterprise Tier-1 Storage: Databases and Virtualization

Function	Solution Rqts	IP Rqts
Flash Control	-ONFI 2.X/3.0 -Toggle Mode 2.0 - Multi flash load/ch - 40 GPIO/ch	 Flash Controller (bad block mgt and wear leveling) Metadata & caching ECC BCH core
RAID Control	PCle Gen 3	 Flash-specific RAID Switching and aggregation

Flash PCIe Cards

Target Application: Embedded PCIe storage for flash cache and scale-out computing

PCIe: Gen 3x8

FPGA controller provides flexibility to integrate multiple complex functions and adapt to changing interfaces & APIs.

Function	Solution Rqts	IP Rqts
Flash Control	-ONFI 2.X/3.0 -Toggle Mode 2.0 - Multi flash load/ch -40 GPIO/ch -PCle Gen 3 x8 -Low power & cooling	 Flash Controller (bad block mgt and wear leveling) Flash RAID Cache controller BCH core PCle config < 100msec Host interface/APIs

Flashing Forward

- FPGAs are a great technology option for Data Centers
 - Networking: Port aggregation
 - Compute: Application Acceleration
 - Storage: Persistent Memory Control
- All development phases supported
 - Prototyping
 - Production
 - Test Validation
 - Upgrades