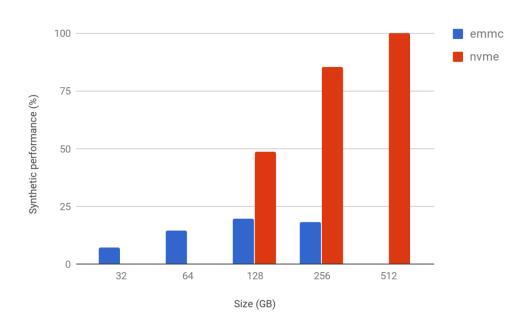


NVMe Client and Cloud Requirements, and Security 9:45 – 10:50

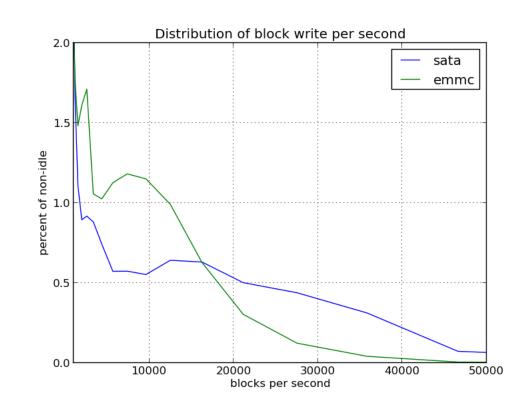
Features needed for SSD deployments at the client	Gwendal Grignou Lee Prewitt	Software Engineer, Google Principle Program Manager, Microsoft
Features needed for large scale SSD deployments	Lee Prewitt Monish Shah	Principle Program Manager, Microsoft Hardware Engineer, Google
Security Vision and Collaboration with TCG	Jeremy Werner Dave Landsman	VP SSD Marketing and Product Planning, Toshiba Director Standards Group, Western Digital


Features needed for SSD deployments at the client

Gwendal Grignou, Software Engineer, Google

Case for NVMe on client

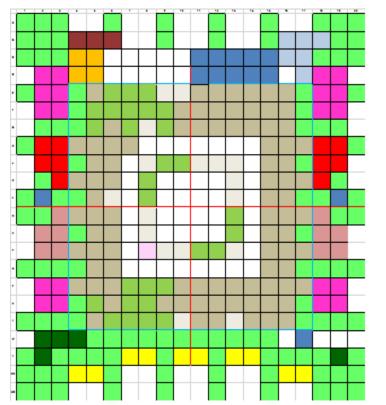
- Chromebook were not storage intensive
- Changing with Android application support (ARC++)
- Considering model with large storage capacity.



Case for NVMe on client

 Storage usage is spiky

 NVMe latencies will bring better customer experience

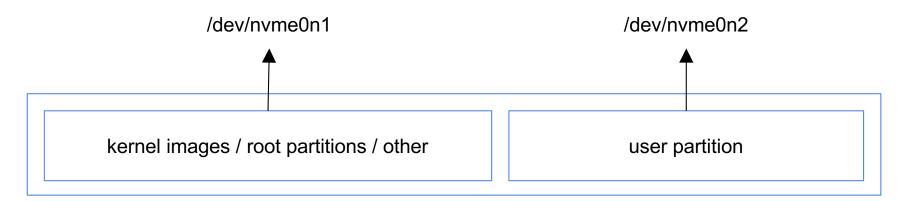


- M.2 Connector viable only in some Chromebox
 - Z height
 - real estate on all chromebook motherboard
 - I6x20 BGA still too big
 - 11.5x13 BGA right format

11.5x13 BGA

- The same MLB can be stuffed with either NVMe or existing eMMC
- It provides a good transition from eMMC based storage to NVMe storage.
- eMMC and NVMe together provide good performance, price, feature, and capacity coverage to meet different customers' needs.

- 2 PCIe lanes
 - 2 x 8 GT/s: enough 512GB of regular flash
 - Revisit with NextGen Memory
- SPI allow stacking SPI NOR Flash



- Controller cost has to go down
- Host Memory Buffer (HMB)
 - Support in Linux kernel has been proposed
 - Other options

Security: Sanitize

Sanitize improve security When transitioning to developer mode crypto-erase if name space is supported block erase otherwise

Conclusion

NVMe devices in Chromebooks around the corner

- New usage model requires better storage
- Controller fixed cost is the limitation
 - Coming on larger capacity first
 - Proposed as SATA SSD replacement •
 - Replacing eMMC down to 64GB considered lacksquare

Client & Mobile Needs for NVMe

Lee Prewitt Principal Program Manager - SFS

- Why is client different?
- What NVMe features are required?

Why is the client different?

Design Principles For Client Hardware

 Support a broad set of hardware in smaller and smaller form factors Thin and light laptops (2 in1), Phone, Tablet, others

- Reduce BOM cost through integration Multiple chips with different functions can be eliminated
- Harden device to security threats Malware attacks, DOS attacks, etc.
- Flexible tradeoff between power usage and performance Power constraints, thermal constraints, thermal events, race to sleep

What NVMe features are required?

NVMe Optional Features

- When are Optional features not Optional?
 - Required by Windows HLK
 - Needed for smooth interop with Windows

Client & Mobile Features

Boot Partitions

- RPMB
- Name Spaces
- HMB
- Drive Telemetry
- Power Management
- Write Protect (targeted for v1.4)

Data Center Needs for NVMe

Lee Prewitt Principal Program Manager - SFS Laura Caulfield Senior Software Engineer - CSI

- Why is the Data Center different?
- What NVMe features are required?

Why is the Data Center different?

Design Principles For Cloud Hardware

- Support a broad set of applications on shared hardware Azure (>600 services), Bing, Exchange, O365, others
- Scale requires vendor neutrality & supply chain diversity Azure operates in 38 regions globally, more than any other cloud provider
- Rapid enablement of new NAND generations New NAND every n months, hours to precondition, hundreds of workloads
- Flexible enough for software to evolve faster than hardware SSDs rated for 3-5 years, heavy process for FW update, software updated daily

What NVMe features are required?

NVMe Optional Features

- When are Optional features not Optional?
 - Required by Data Center RFP
 - Needed to meet DC use cases

- Streams
- Fast Fail
- I/O Determinism
- Drive Telemetry

Cloud Requirements for NVMe

Google perspective Monish Shah

Typical Cloud Application

Application running on

globally distributed

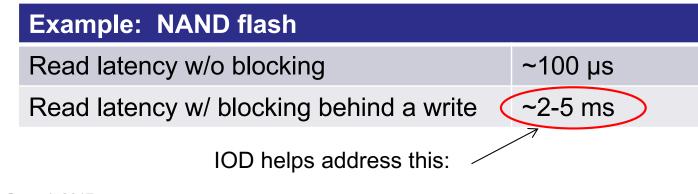
server farms

Serving millions to 1B+ users

Minimize Total Cost of Ownership (TCO) Internet

Minimize Latency

Opportunity #1: I/O Determinism


How I/O Determinism helps

- To optimize TCO, large SSDs are often shared between multiple applications
- I/O Determinism (IOD) helps control latency

Note: NVMe Technical Working Group is actively working on I/O Determinism Technical Proposal

• Common element in all NVM technologies:

• NVM Sets: Provides a mechanism to partition the SSD with performance isolation

Example table of
NVM Set configs

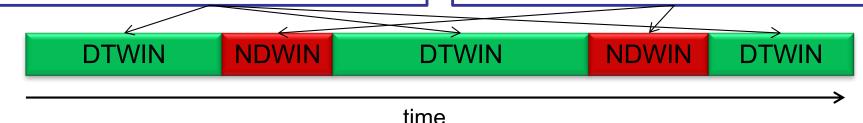
Flash Memory Summit 2017 Santa Clara, CA

Config #	NVM Sets provided	
0	4 Sets of 1 TB each	
1	8 Sets of 512 GB each	

All NVM Sets in a config need not be of the same size.

NVM Sets: Performance Isolation

- Degree of performance isolation is an implementation choice. Recommendation:
 - Do not allow writes in one NVM Set to block reads in another NVM Set
 - To the extent possible, avoid sharing of internal controller resources
 - PCIe BW is shared: no isolation is possible


Predictable Latency Mode

Optional enhancement to NVM Sets, for more advanced applications

 Allows host to control read / write interference within a single NVM Set

DTWIN = Deterministic Window No writes to media. No GC or other maintenance. Minimal writes from host. Minimal tail latency on reads.

NDWIN = Non-Deterministic Window Writes allowed. Host can write; GC and other maintenance allowed. Return to DTWIN when possible.

Read Recovery Level (RRL)

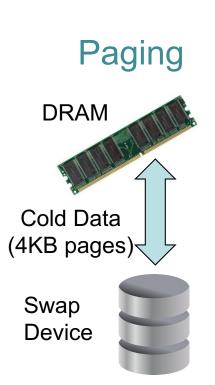
• RRL: host can trade-off UBER for latency

ተ	•	RRL	O/M	I	
Ш К	Vendor specific	Optional			
		Optional		arency	
UBEI		Default (normal recovery effort)	Mandatory	ote	-מופ
Better			Optional	tor	I I
Be			Optional	Rottor	Der
		Fast Fail (minimal recovery effort)	Mandatory	\downarrow	

Opportunity #2: Optimizing memory TCO

3D NVMs: Skirting End of Moore's Law

Semiconductor geometry scaling is reaching its limit. However, impact on different technologies is variable.


DRAM	NAND and new NVMs
Planar technology, no prospect for monolithic 3D scaling	3D already proven for NAND, expected for PCM and ReRAM
Limited prospects for cost and capacity scaling	Reasonable prospects scaling in the foreseeable future

Idea: Use NVMs to supplement DRAM.

Caveat: DRAM will have the best performance. Use NVMs for "cold data".

Implementation: Reinvent Paging

Flash Memory Summit 2017 Santa Clara, CA

Choosing		
swap media		
Media	Latency	
HDD	~10 ms	
SSD	~100 µs	
New NVM	~10 µs	

Google Experimental Results

Promising results with 10 µs swap device: Negligible application performance hit when paging cold data.

Choice of media: PCM, ReRAM, Low Latency SLC NAND NVMe optimization: Use Controller Memory Buffers (CMB)

Opportunities for next gen NVMe SSDs:

1. I/O Determinism:

- Control latency @ constant TCO
- 2. Re-inventing paging
 - Reduce DRAM TCO @ constant performance

Flash Memory Summit 2017 Santa Clara, CA

NVMe,TCG, and security solutions for the NVMe ecosystem

Flash Memory Summit 2017 Dave Landsman – Western Digital Jeremy Werner – Toshiba David Black – Dell EMC

- NVMe and TCG are working together on NVMe security
 - New features developed in Opal family
 - Discussing enabling enterprise capabilities using same core spec as Opal family
- What threats are we trying to address? (and not)
- What's being implemented in NVMe and TCG specs?
- What's next?

NVMe device ecosystem has become broad

Flash Memory Summit

And...

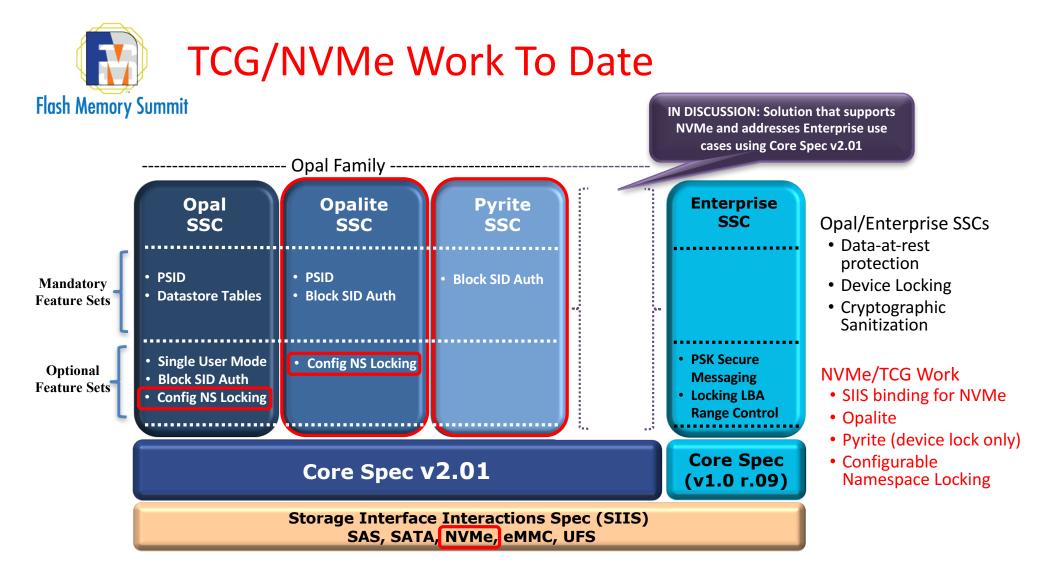
- NVMe-oF Non-PCle fabrics
- NVMe-MI Out-of-Band Management

NVMe Datacenter to Mobile

Flash Memory Summit

Threat Classes

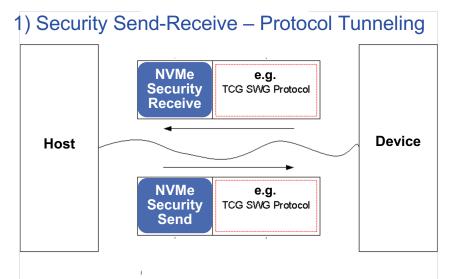
Mitigation Strategies

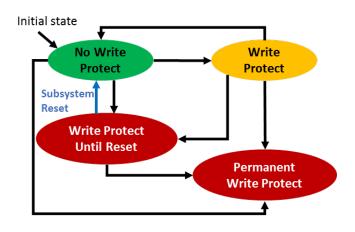

- Physical Device Access
 - Device Lost/Stolen
 - Repurposing a device
- Sanitize
 NYM EXPRESS COMPUTING GROUP
- • Data-at-Rest Encryption **FRUSTED** GROUP

- Data Access
 - Theft or unauthorized disclosure of data
 - Malicious or criminal change or destruction of data

Above +

- Media Write Protection
- Data-in-Flight encryption
- E2E Cryptographic Integrity Checks

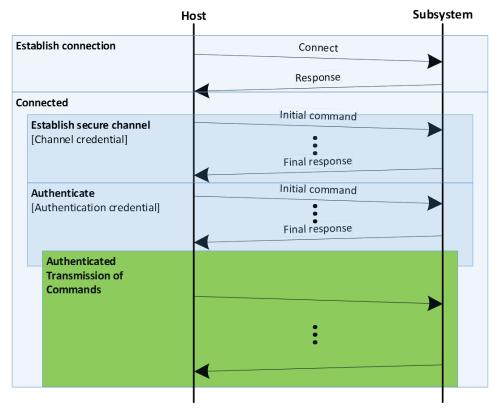

 To left +
 Authentication/ Access Control
 Access Control
 COMPUTING GROUP



NVMe Native Security Features

Flash Memory Summit

2) Namespace Write Protect


3) Sanitize Device

- Make all user data inaccessible through the interface
- Crypto Erase, Block Erase and Overwrite methods supported
- 4) RPMB (Authentication)
 - · Private area in non-user part of device, allowing only authenticated access
 - Used for Boot and Namespace Write Protection; could be used for other use cases

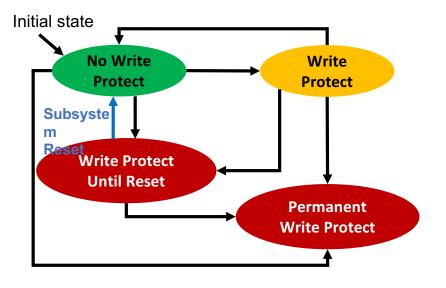
Other Being Discussed

NVMe-oF In-band Authentication

- NVMe and TCG have worked together on baseline security features
 - Data-at-Rest Encryption
 - Device Locking
 - Sanitize
 - Media Write Protection
 - Authentication features
- NVMe and TCG continue working together
 - Data-at-Rest solution for NVMe that addresses Enterprise SSC use cases using Core Spec v2.01
 - NVMe-oF Session Authentication

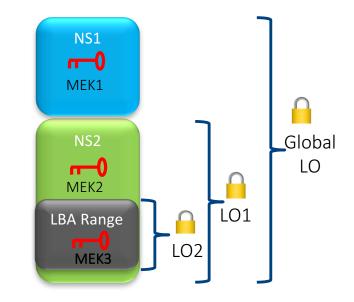
Get involved at NVMe and TCG

THANK YOU


NVMe and TCG Media Write Protection

•

•


Flash Memory Summit NVMe Namespace Write Protect

- Set Features command sets Write Protect states
- State applies to whole namespace
- Use of Write Protect Until Reset and Permanent Write Protect may enabled/disabled using RPMB

TCG Configurable Namespace Locking

- By default, all namespaces controlled by Global Locking Object
- Namespace may be given a separate Locking Object
 - Range of LBAs may be given a separate Locking Object
- Authentication handled by Opal xyz

