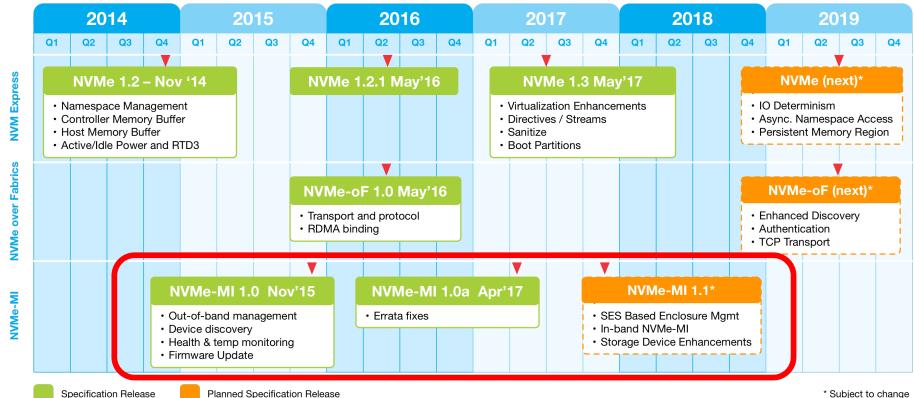


Software and Management for NVMe Session A12 Part B 3:40 to 4:45

An overview and new features targeting NVMe-MI 1.1	Austin Bolen Myron Loewen	Senior Principal Engineer, Dell EMC Platform Architect in NVM Solutions Group , Intel
New features in NVMe drivers Linux, Windows, and VMware	Uma Parepalli, Lee Prewitt Suds Jain, VMware Parag Maharana,	Senior Director, Stealth Mode Startup Principal Program Manager, Microsoft Vmware SSD Architect, Seagate
Storage Performance Development Kit and NVM Express	Jim Harris	Principal Engineer, Intel

NVMe-MI Enhancements


Austin Bolen Dell EMC Myron Loewen Intel Peter Onufryk Microsemi

- NVMe-MI Workgroup Update
- NVMe-MI 1.0a Overview
- Proposed NVMe-MI 1.1 Major Features
 - In-Band NVMe-MI
 - NVMe-MI Enclosure Management
 - NVMe Storage Device Extension
- Summary

NVMe-MI Workgroup Update

Flash Memory Summit 2017 Santa Clara, CA

4

NVMe-MI 1.0a Overview

NVMe Management Interface 1.0a

What is the NVMe Management Interface 1.0a?

 A programming interface that allows <u>out-of-band management</u> of an NVMe <u>Field Replaceable Unit</u> (FRU) or an embedded NVMe NVM Subsystem

Management Fundamentals

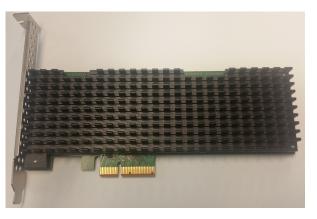
What is meant by "management"?

Four pillars of systems management:

- Inventory
- Configuration
- Monitoring
- Change Management

Management operational times:

- Deployment (No OS)
- Pre-OS (e.g. UEFI/BIOS)
- Runtime
- Auxiliary Power
- Decommissioning



Field Replaceable Unit (FRU)

FRU definition (Wikipedia):

A circuit board, part or assembly that can be quickly and easily removed from a computer or other piece of electronic equipment, and replaced by the user or a technician without having to send the entire product or system to a repair facility.

Out-of-Band Definition

- Per MCTP Overview White Paper (DSP2016), version 1.0.0:
 - Out-of-band

Management that operates with hardware resources and components that are *independent of the operating systems control*.

- In NVMe-MI:
 - Out-of-band

The out-of-band communication path for NVMe-MI is from a Management Controller (BMC) to a Management Endpoint (NVMe storage device) via:

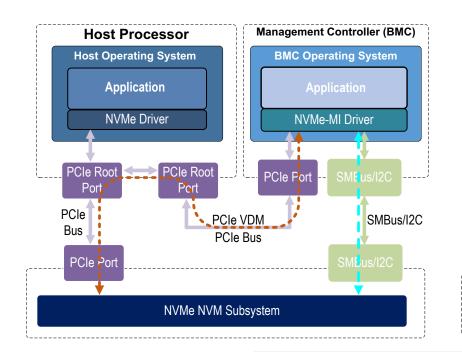
- 1. MCTP over SMBus/I2C
- 2. MCTP over PCIe VDM
- 3. IPMI FRU Data (VPD) access over SMBus/I2C per IPMI Platform Management FRU Information Storage Definition

In-Band Definition

- Per MCTP Overview White Paper (DSP2016), version 1.0.0:
 - In-band

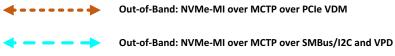
Management that operates with the support of hardware components that are critical to and *used by the operating system*.

Note: The operating system reference here is the "host" operating system, not the BMC operating system.


In NVMe-MI:

• In-band

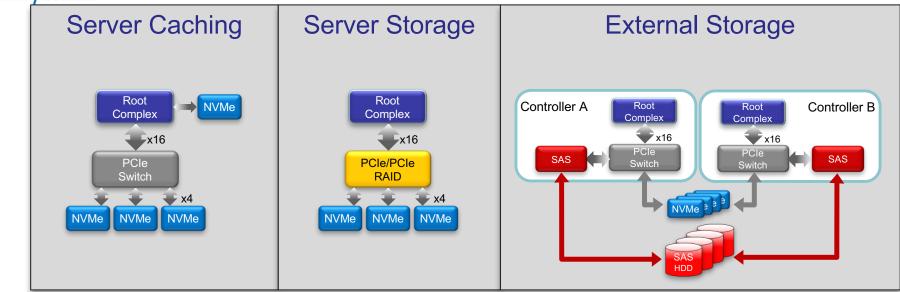
The in-band communication path for NVMe-MI is from host software to an NVMe Controller via the NVMe Admin Queue using the NVMe-MI Send and NVMe-MI Receive commands.



NVMe-MI 1.0a (out-of-band)

- NVMe driver communicates to NVMe controllers over PCIe per NVMe Spec
- MC runs on its own OS on it own processor independent from host OS and driver
- Two OOB paths: PCIe VDM and SMBus
- PCIe VDMs are completely separate from inband PCIe traffic though they share the same physical connection

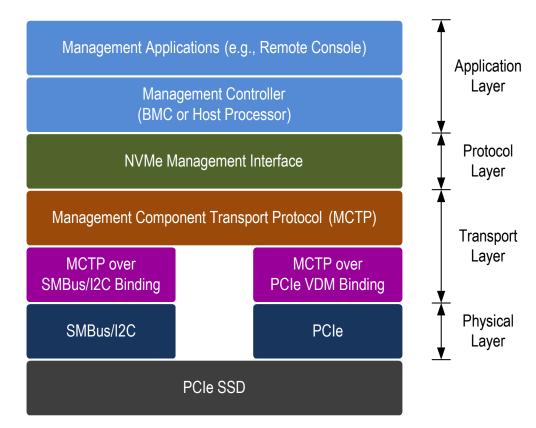
Out-of-Band Data Flow



Flash Memory Summit 2017 Santa Clara, CA

NVMe-MI 1.0a is out-of-band only

NVMe Storage Device Management


Flash Memory Summit

- Example Pre-boot Management
 - Inventory, Power Budgeting, Configuration, Firmware Update
- Example Out-of-Band Management During System Operation
 - Health Monitoring, Power/Thermal Management, Firmware Update, Configuration

NVMe-MI Protocol Layering

NVMe-MI 1.0a Command Set Overview

Flash Memory Summit

Command Type	Command	Command Type	Command
NVMe Management Interface Specific Commands	Read NVMe-MI Data Structure	NVMe Commands	Firmware Activate/Commit
	NVM Subsystem Health Status Poll		Firmware Image Download
	Controller Health Status Poll		Format NVM
	Configuration Get		Get Features
	Configuration Set		Get Log Page
	VPD Read		Identify
	VPD Write		Namespace Management
	Reset		Namespace Attachment
			Security Send
PCle Command	PCIe Configuration Read		Security Receive
	PCIe Configuration write		Set Features
	PCIe I/O Read		
	PCIe I/O Write		
	PCIe Memory Read		

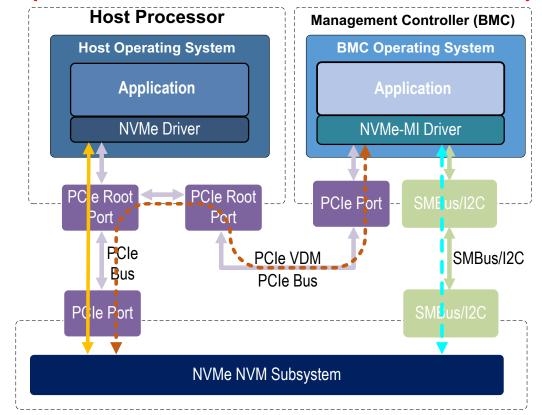
PCIe Memory Write

. . .

In-band NVMe-MI

NVMe-MI 1.1 (out-of-band and in-band)

Flash Memory Summit


- NVMe-MI 1.1 adds in-band NVMe-MI tunnel •
- NVMe-MI command tunneled using two new **NVMe Admin Commands**
 - NVMe-MI Send
 - NVMe-MI Receive

Out-of-Band and In-band Data Flow

Out-of-Band: NVMe-MI over MCTP over PCIe VDM

In-Band: NVMe-MI Tunnel over NVMe

Out-of-Band: NVMe-MI over MCTP over SMBus/I2C and VPD

Flash Memory Summit 2017 Santa Clara, CA

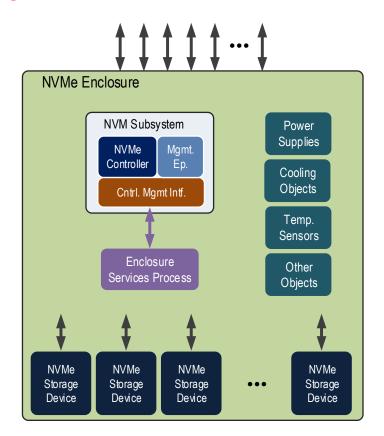
NVMe-MI 1.1 adds in-band NVMe-MI Tunnel

NVMe-MI over NVMe-oF

Flash Memory Summit 2017 Santa Clara, CA

Plumbing in place for NVMe-MI over NVMe-oF

17

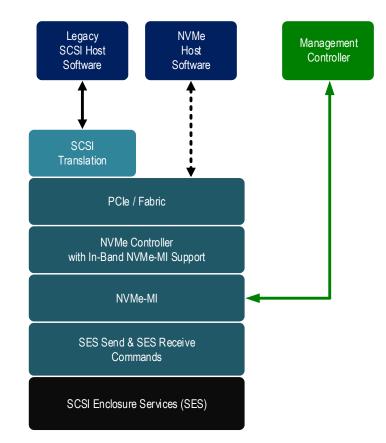

- NVMe-MI offers features not available in-band via NVMe. For example:
 - Ability to manage NVMe at the FRU level
 - Vital Product Data (VPD) Access
 - o Enclosure Management
- NVMe-MI in-band tunnel allows defining commands once in NVMe-MI and utilizing them out-of-band, in-band, and over fabrics.
- Allows NVMe Technical Workgroup to focus on non-management related work

Enclosure Management

Example Enclosure

Enclosure Management

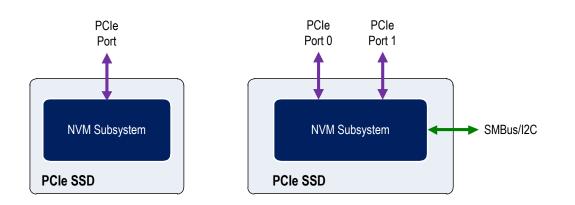
- Native PCIe Enclosure Management (NPEM)
 - Submission to PCI-SIG Protocol Workgroup (PWG) on behalf of the NVMe Management Interface Workgroup (NVMe-MI)
 - Transport specific basic management that is outside the scope of the NVMe-MI workgroup
- SES Based Enclosure Management
 - Technical proposal being developed in NVMe-MI workgroup
 - Comprehensive enclosure management

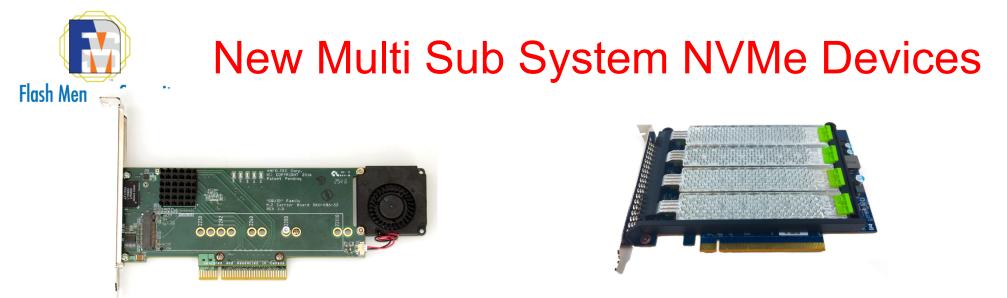

SES Based Enclosure Management

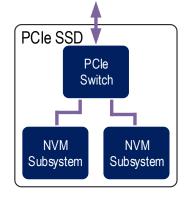
Flash Memory Summit

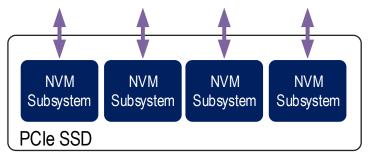
- Reuse NVMe drivers
- Reuse SCSI Enclosure Services (SES) developed by T10 for management of enclosures using the SCSI architecture
- While the NVMe and SCSI architectures differ, the elements of an enclosure and the capabilities required to manage these elements are the same
 - Example enclosure elements: power supplies, fans, display or indicators, locks, temperature sensors, current sensors, and voltage sensors
- NVMe-MI leverages SES for enclosure management
 - SES manages the elements of an enclosure using control and status diagnostic pages transferred using SCSI commands (SCSI SEND DIAGNOSTIC & SCSI RECEIVE DIAGNOSTIC RESULTS)
 - NVMe-MI uses these same control and status diagnostic pages, but transfers them using the SES Send and SES Receive commands.

NVMe-MI SES Layering

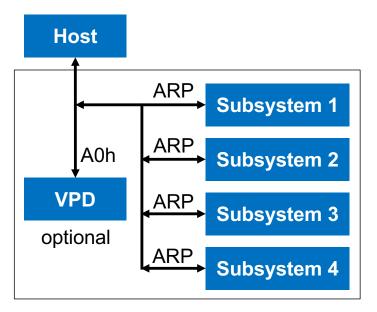


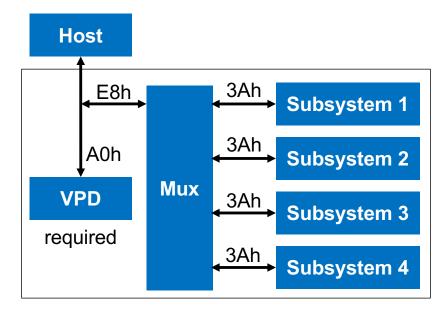

NVM Storage Device Enhancement


Original NVMe Storage Devices


- An NVMe Storage Device consists of one NVM Subsystem with
 - One or more PCIe ports
 - An optional SMBus/I2C interface

M.2 Carrier Board from Amfeltec


ANA Carrier Board from Facebook



SMBus Topologies

- Multiple subsystems on a single SMBus path
- ARP and Mux supported
- Scalable from 2 to 8 or more subsystems

- ARP changes
 - NVMe-MI specification to enable additional devices
 - PMBus/SMBus specification to add new default slave type
- VPD Updates in NVMe-MI
 - Indicate topology and details for mux
 - Optional temperature sensor on carrier board
 - Update for multiple ports

- NVMe-MI 1.0a has been released
 - Multiple NVMe devices passed the UNH-IOL NVMe-MI Compliance Tests
 and are shipping
 - Systems that support NVMe-MI 1.0a devices are shipping
- NVMe-MI 1.1 targeting release by end of 2017
 - In-band NVMe-MI
 - Enclosure Management
 - NVMe storage device enhancements

NVMe Device Drivers

Update and New Features - Uma Parepalli, Lee Prewitt, Parag Maharana, Suds Jain

http://www.nvmexpress.org/resources/drivers/

New Features in NVMe Drivers

- UEFI & Windows Community Drivers Uma Parepalli
- Microsoft Windows Lee Prewitt, Microsoft
- VMWare Suds Jain, VMWare
- Linux Parag Maharana, Seagate

NVMe UEFI Drivers

Uma Parepalli

NVMe UEFI Drivers

- ARM platforms support NVMe at UEFI level.
- Namespace support at UEFI level is available through some implementations.
- NVMe UEFI diagnostics drivers available.

NVMe Windows Community Driver

Uma Parepalli

NVMe Windows Community Driver

- Latest Rev.1.5.0.0 released in in Dec 2016.
- Separate from Microsoft inbox drivers.
- Maintained by dedicated engineers.
- Hosted on OFA site.
- Heavily used by some OEMs and IHVs for custom test & debug.

NVMe Windows Community Driver

- Namespace Management (Create, Delete, Attach, Detach)
- EOL Read Only Support
- Win 8.1 Timers
- Surprise Removal Support in IOCTL Path
- Disk Initialization Performance Optimization

NVMe Windows Community Driver

- Storage Request Block Support
- StorPort Performance Options
- StorPort DPC Redirection
- Security Send/Receive with Zero Data Length
- SNTI updates for SCSI to NVMe Translation

NVMe Windows Community Driver

- Includes additional bug fixes
- Performance improvement & robustness
- NVMe Spec rev 1.2 feature compliance
- Support for MSFT Windows 10, 8.1, 7, Server 2012 R2, 2012 and 2008 R2
- Support for both 32-bit & 64-bit

Windows Inbox NVMe Driver

Lee Prewitt Microsoft

- New Additions for Windows Creators Addition (RS2)
- New Additions for Fall Update (RS3)
- Futures

NVMe Additions for Windows Creators Addition (RS2)

- Host Memory Buffer enabled by default
- Firmware Update and Activate
- Performance tuning
- Power tuning

New Additions for Fall Update (RS3)

- Timestamp (v 1.3)
- Firmware Update Granularity (v1.3)
- Namespace Optimal IO Boundary (v1.3)
- Asynchronous Events for Namespace Addition
- Pass-through support of vendor unique log pages, Device Self-test, Compare commands
- Support for Controller Fatal Status Flag
- Streams (for Azure)

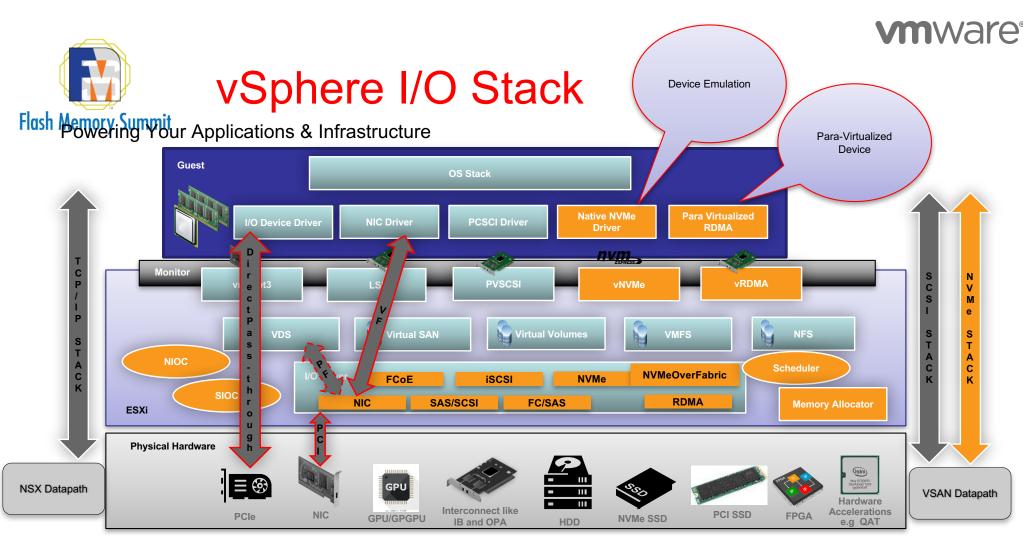
- NVMe SCSI Translation Reference
- IO Determinism

*Not plan of record

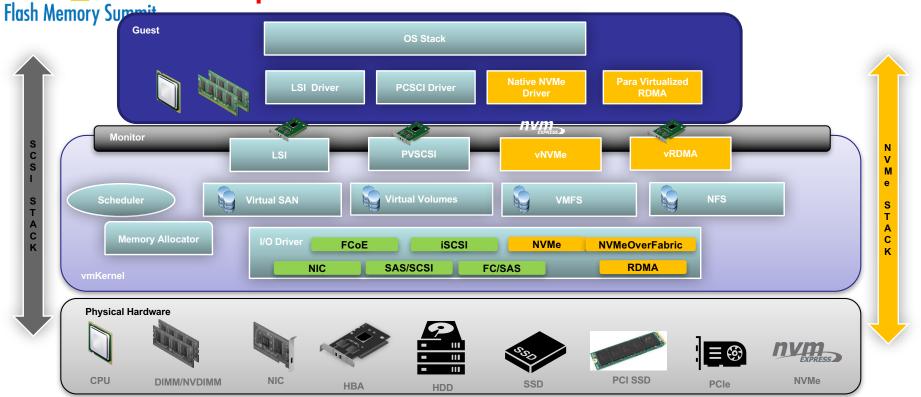
NVM Express in vSphere Environment

Sudhanshu (Suds) Jain VMware

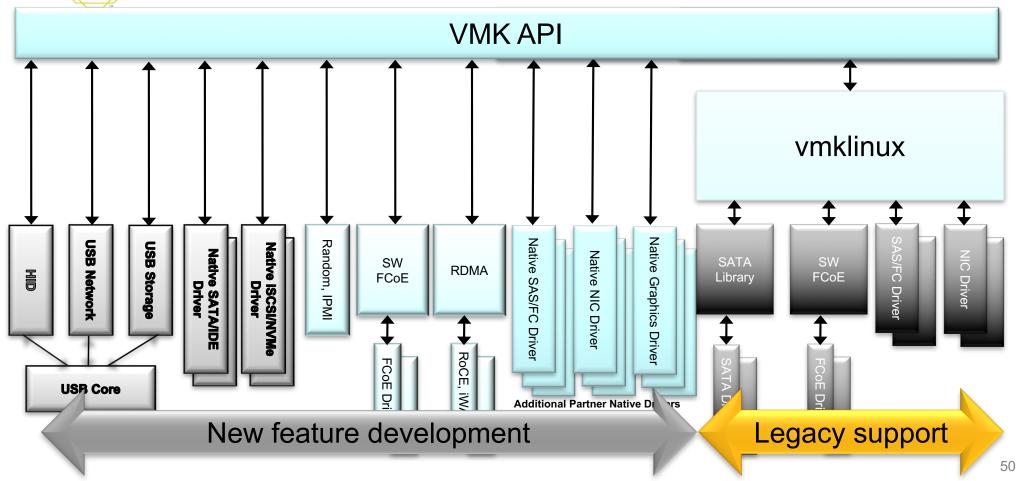
vSphere NVMe Driver EcoSystem



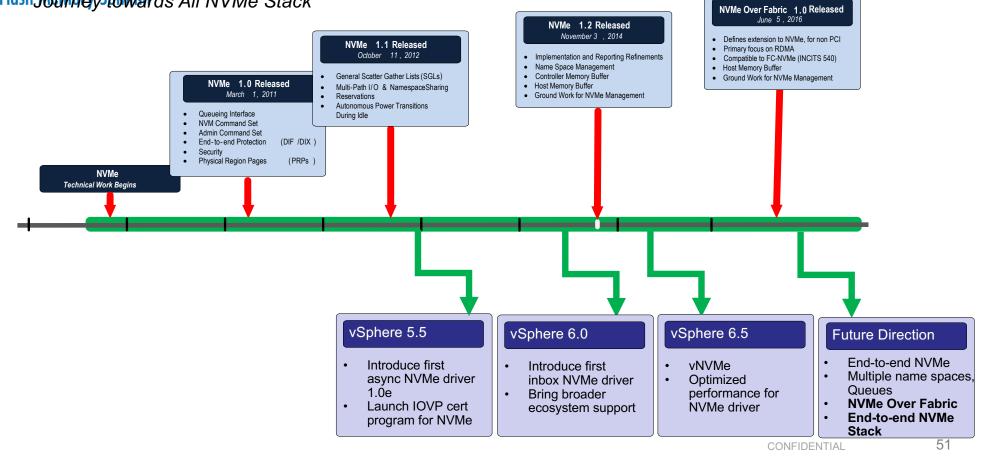
Software-Defined Infrastructure


Software-Defined Data Center Policy-based Management & Automation **Cloud Automation Cloud Operations Cloud Business** Virtualized Infrastructure Abstract & Pool Hybrid Cloud \geq **\$** vCloud Data Center Partners orage Abstrac Compute Abstraction = Virtual Networking Software-Defined Server Virtualization Private WPublic[®] Storage Clouds Clouds 5 · · · Physical Hardware Compute Storage Dell BROCADE BROADCOM cisco **EMC**² FUÏTSU EMULEX HITACHI Inspire the Next LSI Mellanox IBM (intel) Micron NEC Microsoft INVIDIA. NetApp QLOGIC 🭋 redhat. suse

Flash and NVMe				
 A major focus area (moving forward) 				
 vSphere Flash Use-Cases: (KB 2145210) 				
Host swap cache				
Regular Datastore				
 vSphere Flash Read Cache (aka Virtual Flash) 				
 VSphere ESXi Boot Disk 				
VSphere ESXi Coredump device				
VSphere ESXi Logging device				
 Virtual SAN (VSAN) 				



vSphere NVMe Native Driver Stack

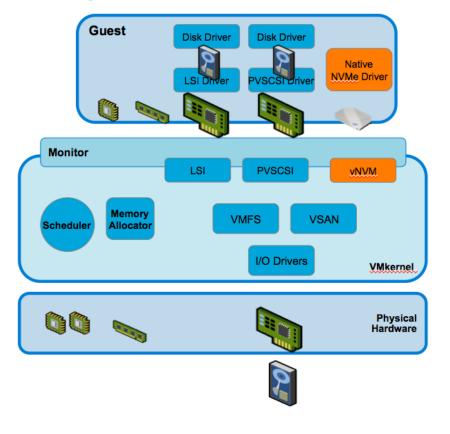

vSphere Driver Architecture Evolution

NVM Express Evolution and vSphere

Flash Managy Stowards All NVMe Stack

NVMe Driver Ecosystem

Flash Memory Summit • Available as part of base ESXi image from vSphere 6.0 onwards


- Faster innovation with async release of VMware NVMe driver
- VMware led vSphere <u>NVMe Open Source Driver project</u> to encourage ecosystem to innovate
 - <u>https://github.com/vmware/nvme</u>
- Broad NVMe Ecosystem on VMware NVMe Driver

https://www.vmware.com/resources/compatibility/search.php?deviceCategory=io

- Close to 300 third party NVMe devices certified on VMware NVMe driver
- Also available for download (async) <u>VMware ESXi 5.5 nvme 1.2.0.27-4vmw NVMe Driver for</u> <u>PCI Express based Solid-State Drives</u>

Introducing Virtual NVMe

Flash Memory Sympetrormance Guest Block I/O

Feature:

- NVMe 1.0e Device Emulation
- Works with inbox NVMe driver is various OS

vmware[®]

New in vSphere 6.5

Hot add/remove support

Benefits:

- Improved application performance, better IOPS and latency numbers
- Leverage Native Stack from Guest OS (Linux, Windows...)

h Memory Summit	Summary vSphere 6.5	6-12 Months	Future Direction
Driver	 Boot (UEFI) Firmware Update End-to-end protection Deallocate/TRIM/Unmap 4K SMART, Planned hot-remove 	 Performance enhancements Extended CLI/UI Name space management Async event error handling Enhance diagnostic logs 	 NVMe Over Fabric Multiple fabric option SR-IOV Sanitize I/O Determinism
Core Stack	 Reduced serialization Locality improvements vNVMe Adaption layer Multiple completion worlds support in NVMe 	 Optimized stack with higher performance NVMe Multi-pathing Dynamic name space management 	 Next Generation Storage Stack with ultra-high IOPS End-to-end NVMe Stack
Virtual Devices	 NVMe 1.0e spec Hot-plug support VM orchestration 	Performance improvementsAsync mode supportunmap support	 Rev the specification Parallel execution @backend 4K Support Scatter-gather support Interrupt coalescing

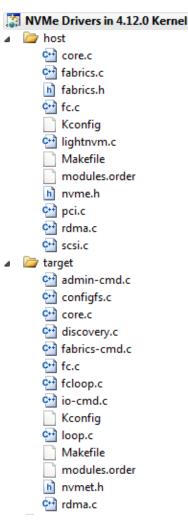
NVMe Core and Fabrics Linux Drivers Update

Parag Maharana SSD Architect Seagate

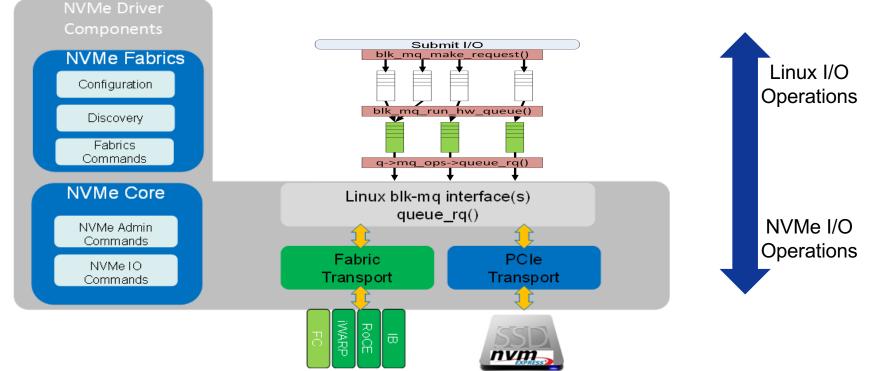
NVMe Linux Drivers Overview

- Linux Core and Fabrics Drivers are based on Fabrics Spec 1.0 and Core Spec 1.2.1
- Linux Host driver is re-architected to support multiple transports (PCIe and Fabrics)
- Linux Fabrics Driver has Host and Target components:
 - Host has Core, PCIe and Fabric modules
 - Target components has Core and Fabric modules
 - Target side required new configuration tool (nvmetcli)
- Linux Fabrics Driver is part of Linux Kernel 4.8 from June'16

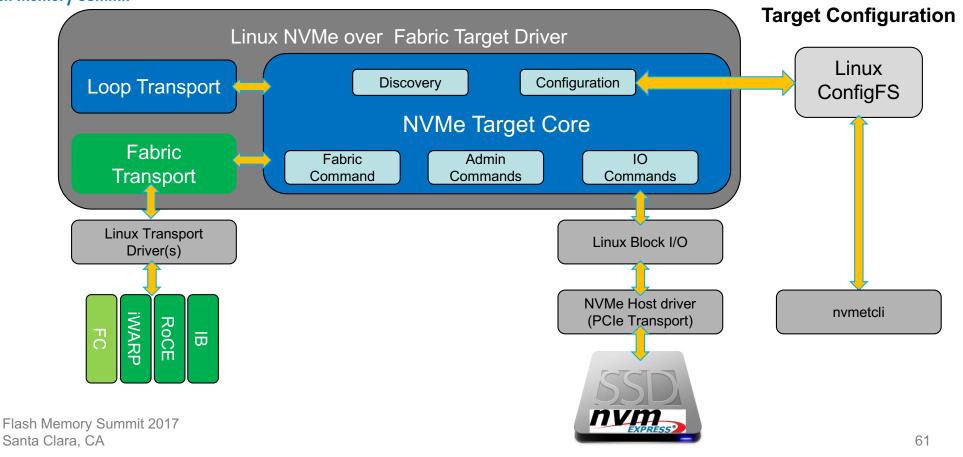
Implemented Features Previously


Flash Memory Summit

- NVMe Host Driver
 - Support for RDMA transport (Infiniband[™]/RoCE[™]/iWARP[™]/Intel OmniPath[®])
 - Connect/Disconnect to multiple controllers
 - Transport of NVMe commands/data generated by NVMe core
 - Initial Discovery service implementation
 - Multi-Path
 - Keep Alive
- NVMe Target Driver
 - Support for mandatory NVMe and Fabrics commands
 - Support for multiple hosts/subsystems/controls/namespaces
 - Namespaces backed by <any> Linux block devices
 - Initial Discovery service; Discovery Subsystem/Controller(s)
 - Target Configuration interface using Linux configfs
 - Create NVM and Discovery Subsystems


New Features

- NVMe Host Driver
 - Support for transport (FC)
 - Automated host multi-path (work in progress)
- NVMe Target Driver
 - Support FC Fabric transport
 - Log page support (smart log pages, error log pages, …)


NVMe Over Fabrics Host and Target Driver Components Flash Memory Summit **PCIe Fabrics** Core Register Configuration Fabric Transport NVMe Admin Interface Commands (Capsule Based) **PCIe Transport** PCIe Bus Discovery (Memory Based) NVMe IO Enumeration Commands RoCE NVMe and Fabrics iWARP Fabrics Common Commands Data structures IB FC

Target Driver Components

Flash Memory Summit

Linux Driver WG Next Steps

- Next steps
 - Fabric
 - Authentication features
 - Controller Memory Buffer
 - NVMe 1.3 complainant and New features
 - Directive Stream Support
 - Virtualization Support
 - Sanitize
 - IO Determinism
- Call for Action:
 - Download driver and try it out
 - Provide suggestion/comment/feedback
 - Suggest any future enhancement

Linux Driver Reference

- Linux Fabrics drivers
 - NVMe Specification
 - http://www.nvmexpress.org/specifications/
 - NVMe Fabric Driver Resource
 - http://www.nvmexpress.org/resources/nvme-over-fabrics-drivers/
 - NVMe Linux Fabric Drivers Source
 - www.kernel.org
 - NVMe-Cli (nvme) Source
 - http://github.com/linux-nvme/nvme-cli/
 - NVMe-Target-Cli (nvmetcli) Source
 - http://git.infradead.org/users/hch/nvmetcli.git
 - NVMe Linux Fabric Mailing List
 - linux-nvme@lists.infradead.org

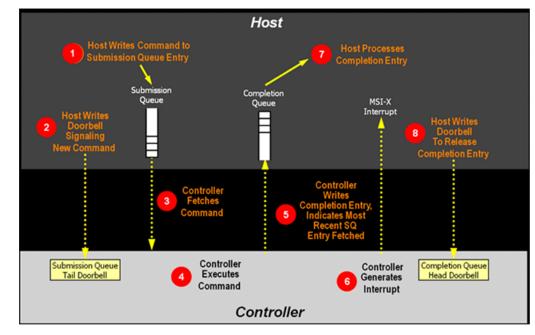
Architected for Performance

Flash Memory Summit 2017 Santa Clara, CA www.nvmexpress.org

NVMETCLI

Flash Memory Summit

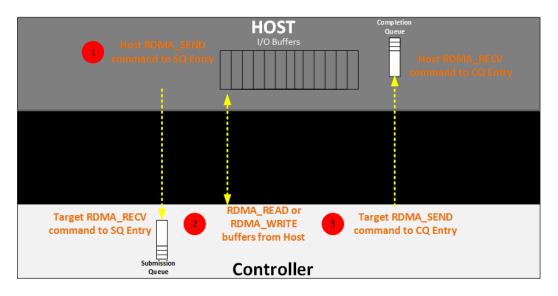
- Example nvmetcli
 - Target NVMe controllers are exposed as hostnqn'N'
 - Target NVMe SSDs are exposed as testnqn'MM'


<pre>[root@martinsville_target nvr</pre>	metcli]# ./nvmetcli
/> ls	
0- ∠	
o- hosts	
o- hostnqn0	
o- hostngn1	
o- hostngn2	
o- hostngn3	
o- hostnqn4	
o- ports	
o- subsystems	
o- testnqn00	
<pre>o- allowed_hosts</pre>	
o- namespaces	
0-1	
o- testnqn01	
o- allowed_hosts	
o- namespaces	
0-1	
o- testnqn02	
o- namespaces	
0-1	
o- testnqn03	
o- testnqn04	
o- testnqn05	
o- testnqn06	
o- testnqn07	
o- namespaces	65
o- 1	
	CO

PCIe Memory Queuing Model

Flash Memory Summit

- 1. Host writes command to SQ
- 2. Host writes SQ tail pointer for doorbell
- 3. Controller fetches command
- 4. Controller processes command
- 5. Controller writes completion to CQ
- 6. Controller generates MSI-X interrupt
- 7. Host processes completion
- 8. Host writes to CQ head pointer for doorbell



Fabrics Queuing Model

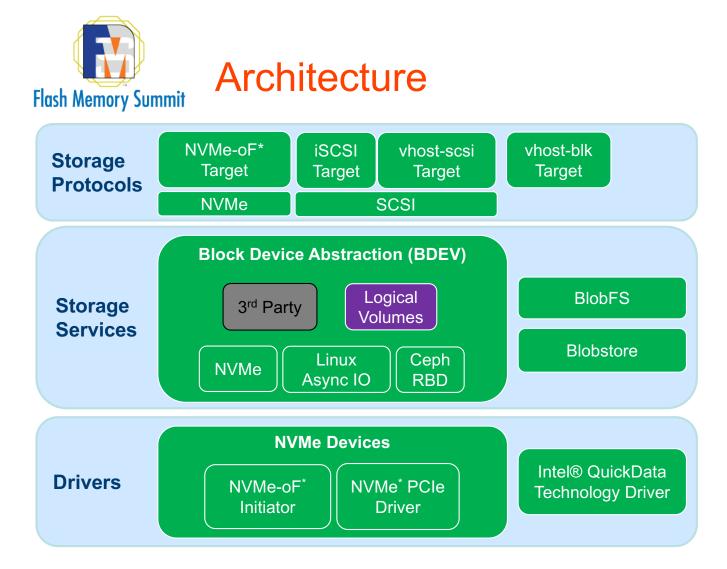
Flash Memory Summit

- 1. Host send RDMA_SEND that update in target as RDMA_RECV in target SQ
- 2. Target issue RDMA_READ or RDMA_WRITE to access data in host memory for Read or Write respectively
- 3. On completion target update in host CQ using RDMA_SEND that is received by host as RDMA_RECV
- 4. NVMe over Fabrics does not define an interrupt mechanism that allows a controller to generate a host interrupt. It is the responsibility of the host fabric interface (e.g., Host Bus Adapter) to generate host interrupts

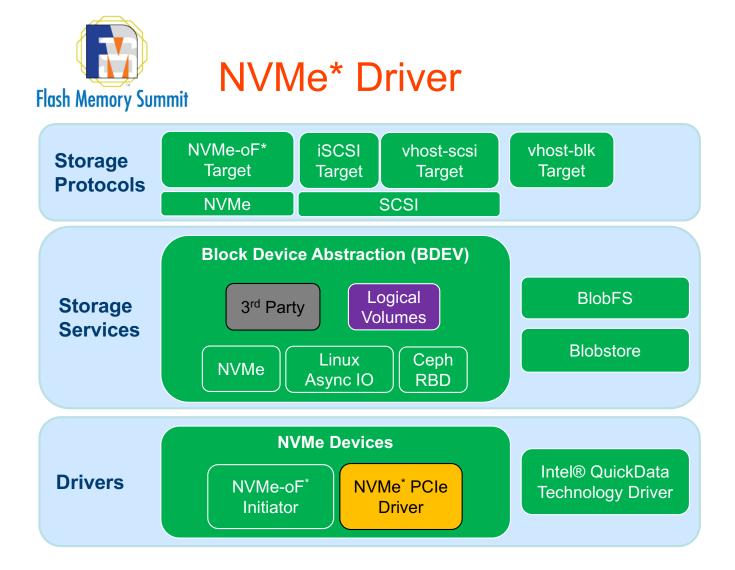
Storage Performance Development Kit and NVM Express*

Jim Harris Principal Software Engineer Intel Data Center Group

NVMe* Software Overhead


Flash Memory Summit

- NVMe Specification enables highly optimized drivers
 - No register reads in I/O path
 - Multiple I/O queues allows lockless submission from multiple CPU cores in parallel
- But even best of class kernel mode drivers have non-trivial software overhead
 - 3-5us of software overhead per I/O
 - 500K+ IO/s per SSD, 4-24 SSDs per server
 - <10us latency with latest media (i.e. Intel OptaneTM SSD)
- Enter the Storage Performance Development Kit
 - Includes polled-mode and user-space drivers for NVMe

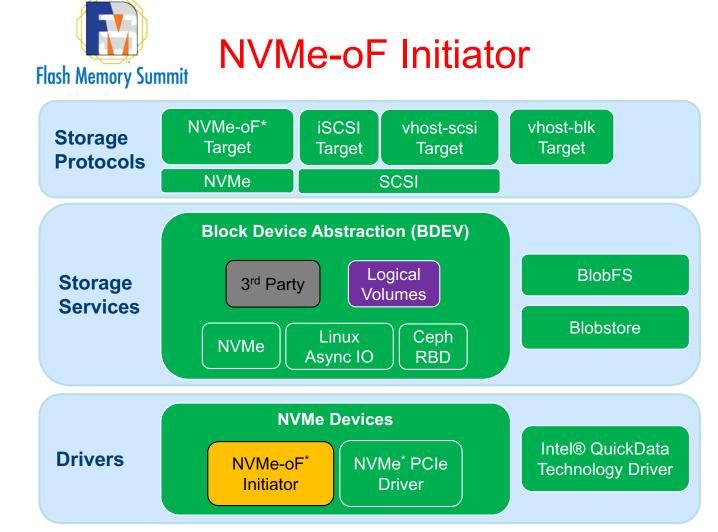


Storage Performance Development Kit (SPDK)

- Open Source Software Project
 - BSD licensed
 - Source code: <u>http://github.com/spdk</u>
 - Project website: http://spdk.io
- Set of software building blocks for scalable efficient storage applications
 - Polled-mode and user-space drivers and protocol libraries (including NVMe*)
- Designed for current and next generation NVM media latencies (i.e. Intel OptaneTM)

Released Q4'17

Released Q4'17



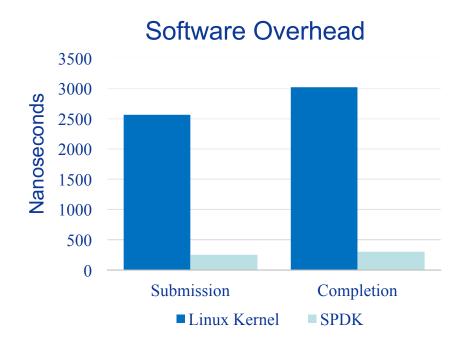
NVMe* Driver Key Characteristics

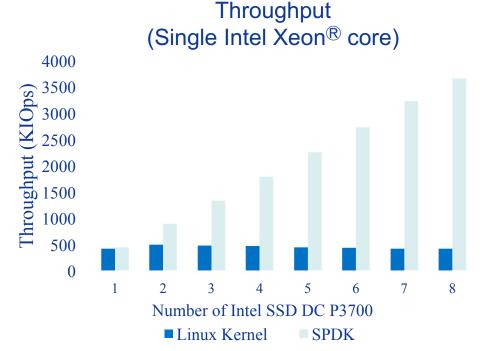
Supports NVMe 1.0 to 1.3 spec-compliant devices

- Userspace Asynchronous Polled Mode operation
- Application owns I/O queue allocation and synchronization
- Features supported include:
 - End-to-end Data Protection
 - SGL
 - Reservations
 - Namespace Management

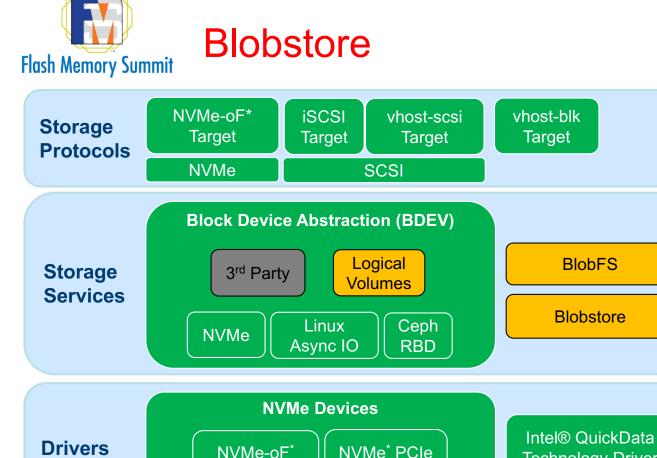
- Weighted Round-Robin
- Controller Memory Buffer
- Firmware Update
- Hotplug

Released Q4'17


NVMe-oF Initiator


- Common API for local and remote access
 - Differentiated by probe parameters
- Pluggable fabric transport
 - RDMA supported currently (using libibverbs)
 - Allows for future transports (i.e. TCP)

NVMe* Driver Performance Comparison


Flash Memory Summit

System Configuration: 2x Intel® Xeon® E5-2695v4 (HT off), Intel® Speed Step enabled, Intel® Turbo Boost Technology disabled, 8x 8GB DDR4 2133 MT/s, 1 DIMM per channel, CentOS* Linux* 7.2, Linux kernel 4.7.0-rc1, 1x Intel® P3700 NVMe SSD (800GB), 4x per CPU socket, FW 8DV10102, I/O workload 4KB random read, Queue Depth: 1 per SSD, Performance measured by Intel using SPDK overhead tool, Linux kernel data using Linux AIO

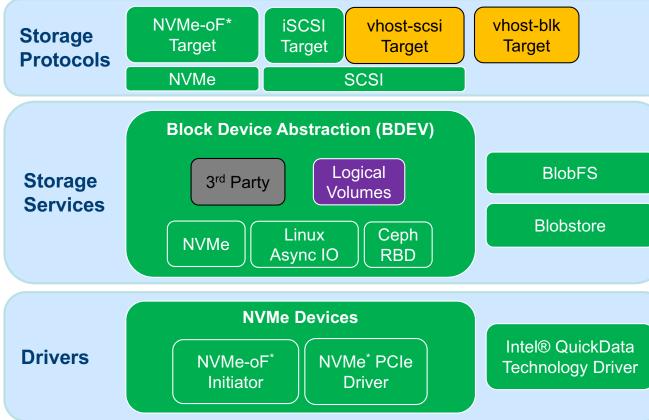
System Configuration: 2x Intel® Xeon® E5-2695v4 (HT off), Intel® Speed Step enabled, Intel® Turbo Boost Technology disabled, 8x 8GB DDR4 2133 MT/s, 1 DIMM per channel, CentOS* Linux* 7.2, Linux kernel 4.10.0, 8x Intel® P3700 NVMe SSD (800GB), 4x per CPU socket, FW 8DV101H0, I/O workload 4KB random read, Queue Depth: 128 per SSD, Performance measured by Intel using SPDK perf tool, Linux kernel data using Linux AIO

Initiator

Driver

Technology Driver

What about:


- filesystems?
- logical volumes? **SPDK Blobstore**
- Userspace general purpose block allocator **SPDK Logical Volumes**

Released

Q4'17

- Enable dynamic • partitioning SPDK BlobFS
- **Enables** basic • filesystem use cases
- Includes RocksDB • integration FMS Forum D-11

Released Q4'17

- Accelerated I/O Virtualization
- QEMU/KVM-based VMs Reduces I/O overhead on I/O processing cores
- Leverage SPDK advantages for I/O on behalf of VMs
 Reduces I/O overhead
- on VM cores
- Polling eliminates VMEXITs on submission
 FMS Forum W-32

