
Designing FTLs for High Capacity Drives

Tim Canepa

Canepa Consulting Group

Santa Clara, CA

August 2017

1

Today’s Drives have it Easy

Santa Clara, CA

August 2017

2

@ 2TB Capacity
 All the Logical to Physical Address Map fits

in CPU reachable memory using 4K map
units

 Map Unit addresses are < 32bits so they’re
easy for the CPU to manipulate

 Recovering 2GB of map even with a flat
mapping scheme may be time consuming,
but not onerous

 Basically you can make an FTL work with a
flat/linear map, a few DMAs, a bunch of
CPU horse power and a little IPC

Future Drives will have Challenges

Santa Clara, CA

August 2017

3

 Drive Capacities are increasing

• Avg enterprise drives 2-4TB today, go to 16TB+ in 2021

 Most SSDs keep some or all of their FTL mapping
structures cached in DDR

 Flash density is currently outpacing DDR density both
on individual die and package basis

• In 2021 timeframe, a 16 die stack using TSV will have
2TB of raw capacity

• 8 package placements = 16TB while 2 DDR placements
may only be 8GB…

 Standards aren’t focused on creating more DDR
capacity and BW for SSDs

• WIO, HMC and HBM are all focused on addressing
different problems…

Larger capacity drives have three

primary challenges to contend with

Santa Clara, CA

August 2017

4

 Flash addressing related challenges

 DDR related challenges

 Scaling challenges to FTL design & SSD architecture

Flash addressing challenges

Santa Clara, CA

August 2017

5

 Today, most SSDs use a 4K granularity for logical to physical data mapping

• At current capacities, mapping addresses fit nicely in 32bits

 But with a 4K map unit, 16TB is the max capacity you can address with 32bits

• And even addressing 16TB using 4K map granularity requires additional “heroics”

- Variable code rates, non binary page counts, bad blocks/planes/pages require
multiple levels of indirection to fit addressing into 32bits

- So a single map translation could take maybe 5 memory accesses

 So what to do?

• Larger granularity (8K, 16K, 32K) mapping, or bigger addresses (33bits, 34bits…)

 Why does this matter?

• Because manipulating unaligned variable size bit fields > 32bits with a CPU is
expensive…

Direct addressing Lookup based addressing

DDR related Challenges

Santa Clara, CA

August 2017

6

 Achieving large DDR capacities for SSDs creates a host of issues

 Physically connecting enough DDR to hold the entire L2P map is challenging
• Beyond 2 ranks, transfer rates drop

• Widening buses to get more connectivity creates routing challenges

• Just real estate for 8+ placements…

 Addressing >4GB of DDR from a 32bit CPU
• Need employ cursors or HW assists to access memory

‒ And cursors suck as they need to be coherent with memory addressing

‒ To be fair, many FTL tables are small and can still fit in CPU address space

• Or transition to 64bit CPUs

 Any slow down in memory speed will have a non-trivial impact on performance

• WHY? SSDs typically use a codeword based ECC (64B or larger) to protect DDR

 Bottom Line
• Even if you can attach enough DDR to hold your entire map @ 4K, you won’t likely

get the performance you want…

FTL Design Choices Impact…

Santa Clara, CA

August 2017

7

 Resource Requirements

• Buffers, memory, hold up energy, HW assists

 Ability to Scale

• Both up and down

 Write Amplification – including WA bounding

 IOPs & Latency (including tail latencies)

 Time To Ready (TTR)

 Pfail/Suspend/Power Down time

 Low Power capabilities

 Firmware Complexities and Planning

A quick review of basic FTL design

Options

Santa Clara, CA

August 2017

8

 Two basic types of FTL L2P Mapping – Flat & Hierarchical

• Flat refers to a one level map where the entire map is typically cached in DDR

• Hierarchical maps have multiple levels, with the upper levels being fully cached in DDR
and some or all of the lowest levels being partially cached in DDR

 Pick your L2P Map unit size – typically 4K

 Handling > 4GB of DDR (cursor, assists or 64bit CPU)

 Handling map unit addresses that exceed 32bits (large packed bit fields)

 Handling DDR access overheads (every tbl access consumes 64B of BW)

 Handling a plurality of disparate system and user data velocities

• Possibly beyond the scope of this discussion, but critical for large capacity drives that are
prone to more sharing

Hardware Assists are necessary!

Santa Clara, CA

August 2017

9

 The combination of large map unit addresses (>32bit) and/or slower
DDR along with multiple levels of indirection to decode L2P locations
makes HW assists a must…

• Could be a combination of CPU assists, CPU instruction extensions and
CPU translations

 Coherent access and communication in multi-core implementations
also need assists

• CPUs need to communicate, but often memory and peripheral buses are
not natively coherent between CPUs, or the coherency mechanisms are
expensive so assists are needed

 Each FTL implementation likely needs its own flavor of assists…

Exploring FTL Options to support

Large Capacity Drives

Santa Clara, CA

August 2017

10

 Flat Map with Larger Map Units

 Segmented Flat Map

 Fully Cached Flat Map with 4K map units

 Multiple Chip solution

 Host Based Map

 Multi-Level Map

Flat map with Larger Map Units?

Santa Clara, CA

August 2017

11

 Simply moving to a larger map unit (8K, 16K, 32K) has a lot of side effects

 Writes & Write Amp
• Data WA increases linearly as map unit size increases

• Write overhead and flash bandwidth is impacted by RMW (host writes only)

‒ AKA host writes now have a read AND a recycling R/W multiplier

• Buffering requirements increase somewhat due to tenure induced by RMW

• Flash bus contention increases
FTL Attribute Score

Write Amp 2x plus worse for 4K writes

IOPs & Latency Reads Fair, Writes Bad

DDR Good

> 32bit addressing Good

TTR Neutral

PFAIL More Complex due to RMW

FW Complexity More Complex due to RMW

 Reads
• Added complexity and restrictions to extract data units

potentially make reads slower

• If you don’t support reading at map unit offsets, you need
to decode the entire map unit to extract 4K of data…

 PFail gets more complicated due to RMW

 Value Prop?

• Not great – WA reduces warrantee

Segmented Flat Map…

Santa Clara, CA

August 2017

12

 Break the Flat map into N swappable segments
• Basically praying for locality

• Will never work for any kind of random workload

 Random Reads/Writes cause segment swapping
• Segment swap rate directly related to percentage of map

cached

• Avg Flash data transfer of (4K * hit rate + (4K + seg
size) * miss rate) for reads alone

• DDR BW = seg size * miss rate for reads alone…

• Let’s just stop here…

 Value Prop?
• Not great. WA variance and read latency variance can

be huge depending on locality

FTL Attribute Score

Write Amp Potentially awful

IOPs & Latency Reads fair, Writes Bad

DDR Bad in terms of BW

> 32bit addressing Needs HW assists

TTR Neutral

PFAIL More Complex (seg recovery)

FW Complexity More complex (seg recovery)

Fully Cached Flat Map with 4K Map

Units

Santa Clara, CA

August 2017

13

 FTL for 32TB drive may still “barely” fit in 32GB depending on the ECC scheme
• ECC overhead + (Map Addr Bits – 32)/32 + (misc FTL structures and code space memory fraction) must be < OP

• SECDED implementations might work up to a point, but they are expensive and add routing complexity…

• DDR frequencies will likely be lower – you either need more IO (routing) or more ranks…

• No solution is very attractive, or cheap…

FTL Attribute Score

Write Amp Good

IOPs & Latency Read/Write slower

DDR Slow and/or Expensive

> 32bit addressing Needs HW assists

TTR Bad

PFAIL Good

FW Complexity More complex (TTR)

 TTR
• Typically full map must be recovered prior to drive going

ready. 32GB of map can take significant time to repair
depending on map flush and journaling frequency and
scheme

• Harken back to the ECC discussion. Each 33 bit map
entry repair could require 64B*2 DDR accesses
depending on the ECC scheme

 Value Prop?
• Not great. DDR cost, routing cost, lost performance

and TTR to recover

Multi-Chip Solution

Santa Clara, CA

August 2017

14

 Not exactly an FTL option per se, but deserves mention
• Basically SSD based HW RAID

• Master/Slave Architectures could be interesting and cheaper (no switch), especially with link bifurcation

 Value Prop?
• Depends. Bifurcation can get rid of the switch cost, but you still have additional chip and memory costs…

FTL Attribute Score

Write Amp Good

IOPs & Latency Good

DDR Good

> 32bit addressing Good

TTR Good

PFAIL Neutral

FW Complexity More complex

Host Based Map

Santa Clara, CA

August 2017

15

 Many permutations and combinations for FTL design
• Most likely hierarchical map, possibly object based. Easier to implement map flushing and coherency

mechanisms. Eases memory requirements as well.

 Host resource impacts
• Some cache and tlb impact from FTL, but should be arguably small (depending on translation implementation)

• Main impacts are DDR consumption and additional bus overhead from FTL operations to drive

• CPU utilization also a factor…

FTL Attribute Score

Write Amp Good

IOPs & Latency Reasonable to Good

DDR Mixed bag

> 32bit addressing More CPU intensive

TTR Unknown

PFAIL Unknown

FW Complexity Depends

 TTR
• Really depends on the journaling and recovery scheme

 Value Prop?
• Depends. Using host resources adds complexity to the

calculus…

Multi-Level Map *

Santa Clara, CA

August 2017

16

 Host LBA is used to index into a First Level of map cached in DDR which references the location of a
Second Level Map page which is either cached in DDR or stored in Flash

• Flexibility to fit into a variety of DDR footprints

‒ Amount of DDR employed determines what percentage of Second Level Map can be cached

• Have to keep second level map page size small to keep system WA under control

• If Second Level Map Page have 256 entries at 33 bits each…

• WC FTL WA is (256*33/8) / 4096 = ~.26

• 16TB requires roughly 4.0E+9 map entries

• 4.0E+9 / 256 = ~ 16M First Level Map Entries

FTL Attribute Score

Write Amp Good

IOPs & Latency Read/Write slightly slower

DDR Good

> 32bit addressing Needs HW assists

TTR Good

PFAIL Good

FW Complexity More complex (TTR)

 TTR
• Deadline based flushing of dirty Second Level Map

pages and the First Level Map trade off recovery time
vs. FTL Write Amplification

 Value Prop?
• Good – scales to selectable DDR footprint which can

work in various Form Factors and price points

* US Patent 9,213,633

So what would a multi-level Map

design look like?

Santa Clara, CA

August 2017

17

 Map footprint would scale to multiple DDR footprints

• First Level Map always cached in DDR

• Some portion of second level map cached in DDR

 Deadline based journaling scheme

• First level map journals in chunks

• Velocity selected to achieve WA goals and recovery
time requirements

• Second level map journaled out by age or pfail
requirements

 Hardware assists

• Definitely for Map lookups

Conclusion

Santa Clara, CA

August 2017

18

 Of all the solutions, a good multi-level map design provides the most
flexibility for scaling, cost and performance

• Possible to make Host or SSD based

• Both have complexities

• Both need HW assists for efficient operation

Santa Clara, CA

August 2017

19

Thank You!

