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@ 2TB Capacity 
 All the Logical to Physical Address Map fits 

in CPU reachable memory using 4K map 
units 

 Map Unit addresses are < 32bits so they’re 
easy for the CPU to manipulate 

 Recovering 2GB of map even with a flat 
mapping scheme may be time consuming, 
but not onerous 

 Basically you can make an FTL work with a 
flat/linear map, a few DMAs, a bunch of 
CPU horse power and a little IPC 
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 Drive Capacities are increasing 

• Avg enterprise drives 2-4TB today, go to 16TB+ in 2021 

 Most SSDs keep some or all of their FTL mapping 
structures cached in DDR 

 Flash density is currently outpacing DDR density both 
on individual die and package basis 

• In 2021 timeframe, a 16 die stack using TSV will have 
2TB of raw capacity 

• 8 package placements = 16TB while 2 DDR placements 
may only be 8GB… 

 Standards aren’t focused on creating more DDR 
capacity and BW for SSDs 

• WIO, HMC and HBM are all focused on addressing 
different problems… 
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 Flash addressing related challenges 

 

 DDR related challenges 

 

 Scaling challenges to FTL design & SSD architecture 
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 Today, most SSDs use a 4K granularity for logical to physical data mapping 

• At current capacities, mapping addresses fit nicely in 32bits 

 But with a 4K map unit, 16TB is the max capacity you can address with 32bits 

• And even addressing 16TB using 4K map granularity requires additional “heroics” 

- Variable code rates, non binary page counts, bad blocks/planes/pages require 
multiple levels of indirection to fit addressing into 32bits 

- So a single map translation could take maybe 5 memory accesses 

 So what to do? 

• Larger granularity (8K, 16K, 32K) mapping, or bigger addresses (33bits, 34bits…) 

 Why does this matter? 

• Because manipulating unaligned variable size bit fields > 32bits with a CPU is 
expensive… 

 

Direct addressing Lookup based addressing 
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 Achieving large DDR capacities for SSDs creates a host of issues 

 Physically connecting enough DDR to hold the entire L2P map is challenging 
• Beyond 2 ranks, transfer rates drop 

• Widening buses to get more connectivity creates routing challenges 

• Just real estate for 8+ placements… 

 Addressing >4GB of DDR from a 32bit CPU 
• Need employ cursors or HW assists to access memory 

‒ And cursors suck as they need to be coherent with memory addressing 

‒ To be fair, many FTL tables are small and can still fit in CPU address space 

• Or transition to 64bit CPUs 

 Any slow down in memory speed will have a non-trivial impact on performance 

• WHY? SSDs typically use a codeword based ECC (64B or larger) to protect DDR 

 Bottom Line 
• Even if you can attach enough DDR to hold your entire map @ 4K, you won’t likely 

get the performance you want…  
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 Resource Requirements 

• Buffers, memory, hold up energy, HW assists 

 Ability to Scale 

• Both up and down 

 Write Amplification – including WA bounding 

 IOPs & Latency (including tail latencies) 

 Time To Ready (TTR) 

 Pfail/Suspend/Power Down time 

 Low Power capabilities 

 Firmware Complexities and Planning 
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 Two basic types of FTL L2P Mapping – Flat & Hierarchical 

• Flat refers to a one level map where the entire map is typically cached in DDR 

• Hierarchical maps have multiple levels, with the upper levels being fully cached in DDR 
and some or all of the lowest levels being partially cached in DDR 

 Pick your L2P Map unit size – typically 4K 

 Handling > 4GB of DDR (cursor, assists or 64bit CPU) 

 Handling  map unit addresses that exceed 32bits (large packed bit fields) 

 Handling DDR access overheads (every tbl access consumes 64B of BW) 

 Handling a plurality of disparate system and user data velocities  

• Possibly beyond the scope of this discussion, but critical for large capacity drives that are 
prone to more sharing 
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 The combination of large map unit addresses (>32bit) and/or slower 
DDR along with multiple levels of indirection to decode L2P locations 
makes HW assists a must… 

• Could be a combination of CPU assists, CPU instruction extensions and 
CPU translations 

 Coherent access and communication in multi-core implementations 
also need assists 

• CPUs need to communicate, but often memory and peripheral buses are 
not natively coherent between CPUs, or the coherency mechanisms are 
expensive so assists are needed 

 Each FTL implementation likely needs its own flavor of assists… 
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 Flat Map with Larger Map Units 

 Segmented Flat Map 

 Fully Cached Flat Map with 4K map units  

 Multiple Chip solution 

 Host Based Map 

 Multi-Level Map 
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 Simply moving to a larger map unit (8K, 16K, 32K)  has a lot of side effects 

 Writes & Write Amp 
• Data WA increases linearly as map unit size increases 

• Write overhead and flash bandwidth is impacted by RMW (host writes only) 

‒ AKA host writes now have a read AND a recycling R/W multiplier 

• Buffering requirements increase somewhat due to tenure induced by RMW 

• Flash bus contention increases 
FTL Attribute Score 

Write Amp 2x plus worse for 4K writes 

IOPs & Latency Reads Fair, Writes Bad 

DDR Good 

> 32bit addressing Good 

TTR Neutral 

PFAIL More Complex due to RMW 

FW Complexity More Complex due to RMW 

 Reads 
• Added complexity and restrictions to extract data units 

potentially make reads slower 

• If you don’t support reading at map unit offsets, you need 
to decode the entire map unit to extract 4K of data… 

 PFail gets more complicated due to RMW  

 Value Prop? 

• Not great – WA reduces warrantee 
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 Break the Flat map into N swappable segments 
• Basically praying for locality 

• Will never work for any kind of random workload 

 Random Reads/Writes cause segment swapping 
• Segment swap rate directly related to percentage of map 

cached   

• Avg Flash data transfer of (4K * hit rate + (4K + seg 
size) * miss rate) for reads alone 

• DDR BW = seg size * miss rate for reads alone… 

• Let’s just stop here… 

 Value Prop? 
• Not great.  WA variance and read latency variance can 

be huge depending on locality  

FTL Attribute Score 

Write Amp Potentially awful 

IOPs & Latency Reads fair, Writes Bad 

DDR Bad in terms of BW 

> 32bit addressing Needs HW assists 

TTR Neutral 

PFAIL More Complex (seg recovery) 

FW Complexity More complex (seg recovery) 
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 FTL for 32TB drive may still “barely” fit in 32GB depending on the ECC scheme 
• ECC overhead + (Map Addr Bits – 32)/32 + (misc FTL structures and code space memory fraction) must be < OP 

• SECDED implementations might work up to a point, but they are expensive and add routing complexity… 

• DDR frequencies will likely be lower – you either need more IO (routing) or more ranks… 

• No solution is very attractive, or cheap… 

FTL Attribute Score 

Write Amp Good 

IOPs & Latency Read/Write slower 

DDR Slow and/or Expensive 

> 32bit addressing Needs HW assists 

TTR Bad 

PFAIL Good 

FW Complexity More complex (TTR) 

 TTR 
• Typically full map must be recovered prior to drive going 

ready.  32GB of map can take significant time to repair 
depending on map flush and journaling frequency and 
scheme 

• Harken back to the ECC discussion.  Each 33 bit map 
entry repair could require 64B*2 DDR accesses 
depending on the ECC scheme 

 Value Prop? 
• Not great.  DDR cost, routing cost, lost performance 

and TTR to recover 
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 Not exactly an FTL option per se, but deserves  mention 
• Basically SSD based HW RAID 

• Master/Slave Architectures could be interesting and cheaper (no switch), especially with link bifurcation 

 Value Prop? 
• Depends.  Bifurcation can get rid of the switch cost, but you still have additional chip and memory costs… 

FTL Attribute Score 

Write Amp Good 

IOPs & Latency Good 

DDR Good 

> 32bit addressing Good 

TTR Good 

PFAIL Neutral 

FW Complexity More complex 
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 Many permutations and combinations for FTL design 
• Most likely hierarchical map, possibly object based.  Easier to implement map flushing and coherency 

mechanisms.  Eases memory requirements as well. 

 Host resource impacts 
• Some cache and tlb impact from FTL, but should be arguably small (depending on translation implementation) 

• Main impacts are DDR consumption and additional bus overhead from FTL operations to drive 

• CPU utilization also a factor… 

FTL Attribute Score 

Write Amp Good 

IOPs & Latency Reasonable to Good 

DDR Mixed bag 

> 32bit addressing More CPU intensive 

TTR Unknown 

PFAIL Unknown 

FW Complexity Depends 

 TTR 
• Really depends on the journaling and recovery scheme 

 Value Prop? 
• Depends.  Using host resources adds complexity to the 

calculus…  
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 Host LBA is used to index into a First Level of map cached in DDR which references the location of a 
Second Level Map page which is either cached in DDR or stored in Flash 

• Flexibility to fit into a variety of DDR footprints 

‒ Amount of DDR employed determines what percentage of Second Level Map can be cached 

• Have to keep second level map page size small to keep system WA under control 

• If Second Level Map Page have 256 entries at 33 bits each… 

• WC FTL WA is (256*33/8) / 4096 = ~.26 

• 16TB requires roughly 4.0E+9 map entries 

• 4.0E+9 / 256 = ~ 16M  First Level Map Entries 

 

FTL Attribute Score 

Write Amp Good 

IOPs & Latency Read/Write slightly slower 

DDR Good 

> 32bit addressing Needs HW assists 

TTR Good 

PFAIL Good 

FW Complexity More complex (TTR) 

 TTR 
• Deadline based flushing of dirty Second Level Map 

pages  and the First Level Map trade off recovery time 
vs. FTL Write Amplification 

 Value Prop? 
• Good – scales to selectable DDR footprint which can 

work in various Form Factors and price points 

 
* US Patent 9,213,633 
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 Map footprint would scale to multiple DDR footprints 

• First Level Map always cached in DDR 

• Some portion of second level map cached in DDR  

 Deadline based journaling scheme 

• First level map journals in chunks 

• Velocity selected to achieve WA goals and recovery 
time requirements 

• Second level map journaled out by age or pfail 
requirements 

 Hardware assists 

• Definitely for Map lookups 
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 Of all the solutions, a good multi-level map design provides the most 
flexibility for scaling, cost and performance 

• Possible to make Host or SSD based 

• Both have complexities 

• Both need HW assists for efficient operation 
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Thank You! 


