¢)

Flash Memory Summit

Designing FTLs for High Capacity Drives

Tim Canepa
Canepa Consulting Group

)

Flash Memory Summit

@ 2TB Capacity

= All the Logical to Physical Address Map fits
iIn CPU reachable memory using 4K map
units

» Map Unit addresses are < 32bits so they're
easy for the CPU to manipulate

= Recovering 2GB of map even with a flat
mapping scheme may be time consuming,
but not onerous

= Basically you can make an FTL work with a
flat/linear map, a few DMAs, a bunch of
CPU horse power and a little IPC

Today's Drives have it Easy

Address

)

Flash Memory Summit

= Drive Capacities are increasing
* Avg enterprise drives 2-4TB today, go to 16TB+ in 2021

= Most SSDs keep some or all of their FTL mapping
structures cached in DDR

» Flash density is currently outpacing DDR density both
on individual die and package basis

* In 2021 timeframe, a 16 die stack using TSV will have
2TB of raw capacity

+ 8 package placements = 16TB while 2 DDR placements
may only be 8GB...
» Standards aren’t focused on creating more DDR
capacity and BW for SSDs

« WIO, HMC and HBM are all focused on addressing
different problems...

Future Drives will have Challenges

[[ij] Larger capacity drives have three
rshiemoy Ssnmt - PYIMary challenges to contend with

» Flash addressing related challenges
= DDR related challenges

= Scaling challenges to FTL design & SSD architecture

)

Flash Memory Summit

= Today, most SSDs use a 4K granularity for logical to physical data mapping
« At current capacities, mapping addresses fit nicely in 32bits

= But with a 4K map unit, 16TB is the max capacity you can address with 32bits
* And even addressing 16TB using 4K map granularity requires additional “heroics”

- Variable code rates, non binary page counts, bad blocks/planes/pages require
multiple levels of indirection to fit addressing into 32bits

- So a single map translation could take maybe 5 memory accesses
= So what to do?
» Larger granularity (8K, 16K, 32K) mapping, or bigger addresses (33bits, 34bits...)
= Why does this matter?

+ Because manipulating unaligned variable size bit fields > 32bits with a CPU is
expensive...

Flash addressing challenges

Direct addressing Lookup based addressing

r

Flash Memory Summit

DDR related Challenges

Address
= Achieving large DDR capacities for SSDs creates a host of issues . space

= Physically connecting enough DDR to hold the entire L2P map is challenging
. Beyond 2 ranks, transfer rates drop
. Widening buses to get more connectivity creates routing challenges
. Just real estate for 8+ placements...

= Addressing >4GB of DDR from a 32bit CPU

. Need employ cursors or HW assists to access memory
— And cursors suck as they need to be coherent with memory addressing
- To be fair, many FTL tables are small and can still fit in CPU address space
. Or transition to 64bit CPUs
o Any slow down in memory speed will have a non-trivial impact on performance
. WHY? SSDs typically use a codeword based ECC (64B or larger) to protect DDR

= Bottom Line

. Even if you can attach enough DDR to hold your entire map @ 4K, you won't likely
get the performance you want...

)

Flash Memory Summit

FTL Design Choices Impact...

» Resource Requirements

Buffers, memory, hold up energy, HW assists
= Ability to Scale

Both up and down

= Write Amplification — including WA bounding
= |OPs & Latency (including tail latencies)

= Time To Ready (TTR)

» Pfail/Suspend/Power Down time

= Low Power capabilities

» Firmware Complexities and Planning

[[ij] A quick review of basic FTL design
Flash Memory Summit Op lons T

LBA =— | Fhadl |

= Two basic types of FTL L2P Mapping — Flat & Hlerarch|cal
* Flat refers to a one level map where the entire map is typically cached in DDR

« Hierarchical maps have multiple levels, with the upper levels being fully cached in DDR
and some or all of the lowest levels being partially cached in DDR

= Pick your L2P Map unit size — typically 4K

= Handling > 4GB of DDR (cursor, assists or 64bit CPU)

= Handling map unit addresses that exceed 32bits (large packed bit fields)
= Handling DDR access overheads (every tbl access consumes 64B of BW)

= Handling a plurality of disparate system and user data velocities

+ Possibly beyond the scope of this discussion, but critical for large capacity drives that are
prone to more sharing

)

Flash Memory Summit

Hardware Assists are necessary!

= The combination of large map unit addresses (>32bit) and/or slower
DDR along with multiple levels of indirection to decode L2P locations
makes HW assists a must...
* Could be a combination of CPU assists, CPU instruction extensions and
CPU translations
= Coherent access and communication in multi-core implementations
also need assists
* CPUs need to communicate, but often memory and peripheral buses are

not natively coherent between CPUs, or the coherency mechanisms are
expensive so assists are needed

= Each FTL implementation likely needs its own flavor of assists...

(i] Exploring FTL Options to support
fshemoy Sommt LArQgE Capacity Drives

= Flat Map with Larger Map Units

= Segmented Flat Map

= Fully Cached Flat Map with 4K map units
= Multiple Chip solution

= Host Based Map

= Multi-Level Map

¢

Flash Memory Summit

Flat map with Larger Map Units?

= Simply moving to a larger map unit (8K, 16K, 32K) has a lot of side effects
= Writes & Write Amp
. Data WA increases linearly as map unit size increases
. Write overhead and flash bandwidth is impacted by RMW (host writes only)
— AKA host writes now have a read AND a recycling R/W multiplier

. Buffering requirements increase somewhat due to tenure induced by RMW
. Flash bus contention increases

= Reads , > _
. Added complexity and restrictions to extract data units Write Amp @ 2xplus worse for 4K writes
potentially make reads slower IOPs & Latency &5 (@) Reads Fair, Writes Bad

. If you don’t support reading at map unit offsets, you need
to decode the entire map unit to extract 4K of data...

= PFail gets more complicated due to RMW > 32bit addressing () Good
= Value Prop? TTR (&) Neutral

* Not great — WA reduces warrantee PFAIL) More Complex due to RMW

DDR) Good

FW Complexity 1‘ More Complex due to RMW

¢

Flash Memory Summit

Segmented Flat Map...

= Break the Flat map into N swappable segments
. Basically praying for locality
. Will never work for any kind of random workload

» Random Reads/Writes cause segment swapping

. Segment swap rate directly related to percentage of map
cached

. Avg Flash data transfer of (4K * hit rate + (4K + seg
size) * miss rate) for reads alone

. DDR BW = seg size * miss rate for reads alone...
. Let’s just stop here...
- Value Prop? IOPs & Latency

« Notgreat. WA variance and read latency variance can [JREEN
be huge depending on locality

Write Amp

> 32bit addressing
TTR

PFAIL

FW Complexity

o

Wy

Potentially awful

"’g‘j Reads fair, Writes Bad

Bad in terms of BW

Needs HW assists

Neutral

More Complex (seg recovery)

More complex (seg recovery)

[[Fully Cached Flat Map with 4K Map
Flash MmSummit UnitS

» FTL for 32TB drive may still “barely” fit in 32GB depending on the ECC scheme
. ECC overhead + (Map Addr Bits — 32)/32 + (misc FTL structures and code space memory fraction) must be < OP
. SECDED implementations might work up to a point, but they are expensive and add routing complexity...
. DDR frequencies will likely be lower — you either need more |0 (routing) or more ranks...
. No solution is very attractive, or cheap...

. Typically full map must be recovered prior to drive going
ready. 32GB of map can take significant time to repair

depending on map flush and journaling frequency and Write Amp &) Good
scheme _ _ _ |IOPs & Latency &5 (&5 Read/Write slower

. Harken back to the ECC discussion. Each 33 bit map ,
entry repair could require 64B*2 DDR accesses DDR Slow and/or Expensive

depending on the ECC scheme
= Value Prop?
. Not great. DDR cost, routing cost, lost performance

> 32bit addressing (1) Needs HW assists
TTR & Bad
and TTR to recover PFAIL (&) Good

FW Complexity =) More complex (TTR)

¢

Flash Memory Summit

Multi-Chip Solution

= Not exactly an FTL option per se, but deserves mention
. Basically SSD based HW RAID
. Master/Slave Architectures could be interesting and cheaper (no switch), especially with link bifurcation
= Value Prop?
. Depends. Bifurcation can get rid of the switch cost, but you still have additional chip and memory costs...

Write Amp &) Good
IOPs & Latency () Good
DDR </ Good
> 32bit addressing (L*) Good
TTR (&) Good
PFAIL (&2) Neutral

FW Complexity More complex

¢

Flash Memory Summit

Host Based Map

= Many permutations and combinations for FTL design

. Most likely hierarchical map, possibly object based. Easier to implement map flushing and coherency
mechanisms. Eases memory requirements as well.

= Host resource impacts
. Some cache and tlb impact from FTL, but should be arguably small (depending on translation implementation)
. Main impacts are DDR consumption and additional bus overhead from FTL operations to drive
. CPU utilization also a factor...

= TIR Write Amp (&) Good
. Really depends on the journaling and recovery scheme

= Value Prop?

. Depends. Using host resources adds complexity to the DDR © Mixed bag
calculus... > 32bit addressing (1) More CPU intensive

TTR Unknown
PFAIL) Unknown

IOPs & Latency =R Reasonable to Good

FW Complexity Depends

r

Flash Memory Summit

Multi-Level Map *

= Host LBA is used to index into a First Level of map cached in DDR which references the location of a
Second Level Map page which is either cached in DDR or stored in Flash

. Flexibility to fit into a variety of DDR footprints
— Amount of DDR employed determines what percentage of Second Level Map can be cached

. Have to keep second level map page size small to keep system WA under control
. If Second Level Map Page have 256 entries at 33 bits each...
* WCFTL WA s (256*33/8) / 4096 = ~.26
. 16TB requires roughly 4.0E+9 map entries

 4.0E+9/256 =~ 16M First Level Map Entries Write Amp () Good
= TTR A —
. Deadline based flushing of dirty Second Level Map IOPs & Latency © (& Read/Write slightly slower
pages and the First Level Map trade off recovery time DDR &) Good

vs. FTL Write Amplification
= Value Prop?
. Good — scales to selectable DDR footprint which can

> 32bit addressing Needs HW assists

TTR) Good
work in various Form Factors and price points PFAIL () Good

FW Complexity More complex (TTR)
*US Patent 9,213,633

(i] So what would a multi-level Map
fsh Memory Ssnmt A€S1QN l0OK like?

= Map footprint would scale to multiple DDR footprints
* First Level Map always cached in DDR
« Some portion of second level map cached in DDR

= Deadline based journaling scheme
* First level map journals in chunks

* Velocity selected to achieve WA goals and recovery
time requirements

« Second level map journaled out by age or pfalil
requirements

= Hardware assists
« Definitely for Map lookups

)

Flash Memory Summit

Conclusion

= Of all the solutions, a good multi-level map design provides the most
flexibility for scaling, cost and performance
* Possible to make Host or SSD based
* Both have complexities
* Both need HW assists for efficient operation

@

Flash Memory Summit

Thank You!

