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q  Storage Class Memory (SCM) technology summary: 
§  New layer in the storage hierarchy between DRAM & NAND flash 
§  Price, capacity, endurance & perf are between those of DRAM & NAND flash 
§  Persistent and byte-addressable memory – not block-based SSD! 
§  128-512GB NVDIMMs announced (Intel/Micron AEP/3D XPoint), market availability in the 

next couple of years, other companies working on alternatives 
§  Good for fine-grained, precious information, e.g. metadata, KVSes… 

q  SCM challenges: 
§  SCM properties require redesign of data 

structures & algorithms to fully take 
advantage of SCM 

§  Current system architectures (e.g. volatile 
CPU caches) require explicitly maintaining 
consistency & durability on SCM 

§  SCM won’t help all use cases, need to 
choose workloads carefully 
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q  Same solid-state media chips can be used for memory or storage: 

q  If it’s not using memory semantics, not connected to the memory bus, not byte-addressable and must 
traverse the storage stack – it’s not a SCM (Storage Class Memory), it’s something else and calls for a 
different solution. 
§  Intel Optane/Coldstream is not SCM, it is a faster Solid State Disk (SSD), even though it’s using the 

same 3D XPoint chips as AEP/Apache Pass 
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Data Structure Design 
Considerations 



Design considerations 
q  Avoid Traditional Thinking  

§  When designing SCM-based data structures, avoid being locked in into the traditional system design thinking 
where access to persistent storage is considered to be so expensive that it makes sense to avoid doing it at 
almost all costs. 

q  Transient vs Persistent State 
§  Organization of the data into “transient” and “persistent” portions in traditional RAM + block based storage 

systems. However, there is much less incentive for strict separation of representations of the persistent state in 
SCM-based systems . 

 

q  Keeping Data in DRAM vs SCM 
§  Decision to maintain a DRAM cache of an SCM-based data structure or to maintain a derived/optimized transient 

subset of each entry of a persistent data structure in DRAM (e.g. index) depends almost entirely on the projected 
workload. The most important factors affecting it are: (1)The projected rate of updates of the data stored; (2)The 
amount of stores into SCM required to implement each update in a consistent and persistent manner. 

 

 



Design considerations – Cont. 
q  The concept of “Update Amplification” (UA) in the context of SCM is analogous to that of 

Write Amplification (WA) in storage. 
§  Notable difference from storage WA is that due to the CPU memory/cache subsystem organization, at 

the lowest level, updates of data in SCM often incur the following overheads, not all of which are strictly 
“writes”: 
•  First, fetching the data from SCM (read) – often causing a CPU cache miss stall and eviction of 

other useful data from the caches, as well as consuming bandwidth. 
•  Then, modifying the data, while carefully maintaining update ordering (modify) – usually preventing 

the CPU from doing other useful work at the same time due to the coarse granularity of the CPU 
mechanisms available for this task. 

•  Finally, requesting that the modified data reach the power-fail protected domain (write) – often 
causing further CPU stalls due to the limited throughput of the internal CPU subsystems 
responsible for doing that. 

§  These overheads initially appear to be insignificant compared to the cost of traditional block storage IO 
operations. In practice, however, their combined cost is often many times higher than that of the 
actions the application is trying to carry out (e.g. increment an integer), and usually much higher than 
the corresponding RAM-only update overheads. 



Design considerations – Cont. 
q  UA Effect on Data Structure Choice 
§  Efficient data structures with inherently high internal UA are not necessarily unsuitable for use with 

SCM. However, the level of acceptable internal UA is inversely proportional to the expected rate of 
updates the data structure will undergo. 

 
q  Curtailing the SCM Accesses 
§  Minimize the amount of cache lines mapped to SCM that are accessed per op by modifying the data 

structure designs, to reduce UA. 

 

q  DRAM / SCM Reads vs SCM Updates 
§  Consider trading extra CPU cache and DRAM reads or writes, and even SCM reads for SCM updates. 
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Specific Examples of 
Microbenchmark 

Results 



Metadata Management 

q  Design SCM-based data structures for 
AFA/SDS storage system under realistic 
storage workload scenarios: 
•  Deduplication fingerprint indexing 
•  Scalable block mapping mechanisms, ref-

counting, GC metadata tracking, et 
•  SCM write caching/aggregation for WA 

reduction 
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Flash Map
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Dedup
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SSDs

Address Mapping of SSD Pool



Disclaimers 
q  Please keep in mind: 

§  All the data structures mentioned in this section are tunable designs. Their performance can vary 
significantly based on the stored data properties (e.g. K/V sizes), workloads (R:W ratio, specific nature 
of updates), and characteristics of the SCM (emulated, in this case) 

§  The results provided here are just specific examples of performance, relevant for a specific tuning of a 
specific data structure measured using a specific test harness. Changing any of those will affect the 
results, often quite dramatically 

§  Since the results presented are from microbenchmarks, the absolute numbers are of little value – they 
are largely dictated by the memory subsystem of the CPUs used, number and clock frequency of the 
memory channels and DIMMs used, and SCM emulation target settings. But the order of magnitude of 
the results and their relation to one another is indicative of the SCM potential 

§  Most of these results were obtained at a specific point in time during the development process of the 
individual data structures. Most of the data structures were subsequently re-tuned for different use 
cases inside SSTD, often providing significantly higher results 

§  Unless otherwise specified, the results are for a single CPU core 



Persistent Hash Table 
q  Our first design was a family of persistent hash tables (HTs) 

§  Non-resizable, fixed K/V size HT, aimed primarily at various indexing tasks, and in particular AFA 
dedup fingerprint indexing. The design is tuned to maintain both high insert and high lookup 
performance at high load factors (90-95%) and O(1) recovery. 

§  The actual solution is a dual HT design, with both tables based on bucketized Cuckoo Hashing 
•  Primary HT is typically tuned to occupy ~97-99.5% of the total capacity, with its max relocation path 

length set to ~1, to ensure high average update performance. 
•  Secondary HT occupies the rest of the total capacity, with its max relocation path length is set to a 

fairly high value to delay premature table “overflow” at the expense of slightly reduced update rate 
•  Inserts are always directed first to the primary table, only falling back to the secondary if the primary 

“overflows”. Lookups can be done in parallel on both tables, or sequentially with prefetching – 
depending on the workload. 

•  The balance between the two table capacities, bucket sizes of the tables and the max relocation 
path of the primary HT are the main tunable parameters that can – and should! – be adjusted to 
match the expected workload characteristics (R/W skew). 



Persistent Hash Table – Cont. 
q  Evaluation with dedup workload 

§  Achieved much better performance and space utilization at high load factors than the best of Intel NVML 
persistent hash tables – even before any major optimizations 

§  Additional use cases: dedup fingerprint indexes, KVSes, NoSQL, caches 
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§  All HTs measured at 90% load factor, while emulating SCM with projected 
performance characteristics of Intel AEP (not DRAM at full speed!) 

§  SRT-2x: SCM-based persistent HT designed to maintain high performance 
at load factors of 90-95%+, for these tests configured for dedup-like app 

§  “Dedup”: mix of Ins/Del/Get/NGet ops representative of AFA deduplication 
use case, “Ins/Del”: 50%/50%, “Get”/ ”NGet“: 100% hit/miss lookups 

§  All benchmarks done on large datasets to eliminate caching effects 
§  Different benchmarks used to measure different performance aspects, but 

using similar workloads. pmembench used as the test harness on the left 2 
graphs. Results above are averages of multiple runs. All results are 
preliminary, measured early on, before significant performance tuning 

§  Intel Xeon E5- 2680 v4 CPU used, CPU was not the bottleneck above 

~4.1x 
faster 

~2.8x 
smaller 

Single-thread performance 



NKVS: Persistent Linear K/V Store 
q  NKVS is a simple but powerful linear mapping data structure 

§  It is a “nameless” K/V store, i.e. inserts do not specify a key, only the value to be inserted. The key is “returned” to 
the caller/invoker upon successful insertion, and can subsequently be used for lookups/updates 
•  This obviates the need for an external “free slot” lookup mechanism (e.g. O(n) bitmap or O(log2(n)) B+Tree that 

are often used in storage systems) on the caller’s side 
•  Keys are unsigned integers of appropriate width (proportional to the number of elems) 
•  This solution is uniquely suited to SCM-based environments where the caller’s own data structure can be 

cheaply updated post-factum with the actual key allocated. In traditional block-based persistence environments 
this update would trigger potentially an avalanche of updates, but in SCM it can be done trivially due to its byte-
addressability 

§  It has array-like direct O(1) lookup and update complexity and O(1) recovery 

§  The allocator used is an internal dual-mode arena/free-list design that incurs small O(1) overheads for all the 
operations, including system initialization 

§  Vector interfaces allow amortizing crash-consistency overheads over a large number of operations 

•  Use cases: block mapping, segment tracking, storage GC, ref-counting, etc. 
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NKVS – Cont. 
q  Evaluation with block-mapping workload 

§  The chart on the right reflects the performance of NKVS in its full crash-consistent configuration with SCM 
emulation on different workloads. 

§  The chart on the left demonstrates the effect on performance of CLFLUSH-es used for the crash-consistency 
mechanism and of SCM emulation. 

§  Measured at 90% load factor, with (suffix “-emu” in the left chart, all of the right chart above) or without SCM emulation 
§  “70%/30% Rand RD/WR”  storage workload: a mix of Get/Ins/Del/Upd ops representative of SDS/AFA block mapping with GC use 

case. This translates to about 3:2 lookups:updates ratio at the NKVS level 
§  All benchmarks were run on Intel Xeon E5- 2680 v4 CPU, on large datasets to limit caching effects. pmembench used as the test 

harness. Results displayed are averages of multiple runs. 
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Persistent Bloom Filter 
q  Another good example of effects of different SCM-specific tunings and optimizations on a 

data structure is a Bloom Filter (BF) 
§  Classic/naive implementation of BF has very poor cache locality. The impact of this is amplified by 

the increased latency of SCM 
§  By changing the design of BF from basic to blocked and applying some basic optimizations, it is 

possible to significantly improve the overall performance without degrading the false positives rate 
(FPR) 
•  The optimal design of choice for the given target parameters turned out to be 2 CLs per block, 

where the 1st of the hash functions selects the block while the rest of the functions turn on the 
corresponding bits as in the regular design. This significantly improves cache locality 

•  Once the cache locality issue is fixed, it becomes possible to apply additional optimizations, like 
prefetching, which further improves performance 

§  Use cases: I/O elision for dedup SSD/disk lookups, slow/complex data structure lookup elision, 
cross-node communication elision, etc. 



Persistent Bloom Filter – Cont. 
q  Evaluation with different workloads 

§  The design of choice was 2 CLs per block, 11 bits/entry using 5 hash functions, which gives FPR 
of 0.9% – though these were derived from an arbitrary goal 

§  “NB”: non-blocked BF, otherwise block sizes specified in CLs 
§  Mixes of PGet/NGet ops representative of dedup segment content lookups for 

high/low dedup ratio workloads 
§  Measured while emulating SCM with projected performance characteristics of 

Intel AEP (not DRAM at full speed!) 
§  All benchmarks done on large datasets (120M) to eliminate caching effects 
§  Intel Xeon E5- 2680 v4 CPU used, CPU was not the bottleneck above 
§  Results above are averages of multiple runs. All results are preliminary 
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§  Due to the nature of BFs, the variance 
between positive and negative lookups 
is very minor 

§  As expected, other target BF 
parameters resulted in significantly 
varying performance, but the 2 CL 
blocked design remains the leader 

§  Impact of the different design choices 
on performance can be seen on the 
next slide 



Persistent Bloom Filter – Cont. 
q  Impact of BF design and implementation optimizations on performance 

§  FPRs are as per previous slide. Configuration of choice - highlighted 
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Implementation 
Techniques 



Custom-made Persistence 
q  Consider using custom-made, optimized persistence implementations matched to the 

corresponding data structures instead of relying on a single general-purpose library 
§  Libraries like NVML, NVM-Direct, Mnemosyne, etc. have the appeal of using a uniform approach to 

persistence that allegedly can be (or was, by a 3rd party) implemented and debugged only once. 
However, in practice, for the foreseeable future their usage will probably not yield the expected 
hassle-free benefits, at least not until a lot of hands-on SCM-based data structure design and 
implementation experience is gained by the teams. 

§  Leveraging system-, workload- and data structure-specific semantics can lead to great 
improvements to performance by allowing a lot of runtime work to be eschewed. This is typically 
impossible to do with cookie-cutter generic implementation approaches 



Data-dependent Implementations 
q  Consider creating “families” of data structures based on the common code base, but each 

tuned to different requirements (e.g. size of data being stored) 
§  In many cases a data structure designed to store small values (that can be atomically modified) can be 

made to be significantly faster (e.g. 2x-4x faster) than the same design that needs to store moderately 
small values (e.g. 24-64B in size), just by using a different crash-consistency technique 

§  If possible, structure the code so that the persistence strategy is independent of the data structure 
maintenance algorithms. Careful decomposition, macros and/or C++ templates can be of help in this 
regard 

§  Since usage of general-purpose persistent allocators (as well as multiple internal indirections in 
general) has significant negative performance impact, crash-consistency requirement amplifies the 
need for smart data layout. E.g. fixed-size value data structure can often be made much faster than 
variable-sized one by cutting a level of indirection, without altering the other data structure algorithms 



Picking a Crash-consistency Method 
q  Consider using atomic updates, µLogs, CoW and WAL for different data structures as 

necessary and where possible, in that order of preference 
§  In simpler systems using just SCM as the only persistent media in the system, where the entire “client” 

request can be processed synchronously and sequentially, it might be possible – and desirable – to 
use a single crash-consistency solution (e.g. literally a single common WAL or CoW + WAL  for all the 
data structures – though typically this will be a per-core mechanism) 

§  However, in more complex systems with asynchronous and potentially high-latency stages of 
processing (e.g. involving network accesses or SSD/HDD-based storage), processing the entire “client” 
request as a single persistent transaction will often not be possible from latency/throughput standpoint. 
In these cases, using different data structure-specific crash-consistency techniques will lead to a 
higher-performance system than just trying to flood a single generic common WAL with many mini-
transactions at different stages of the processing 



Avoiding General-purpose Allocators 
q  If possible, try avoiding usage of general-purpose external persistent allocators in favor of intrusive data 

structure implementations and internal allocators 
§  High-performance multi-threaded RAM allocators (jemalloc, tcmalloc, TBBmalloc, Hoard, etc.) 

achieve their performance at the expense of significant internal complexity. Trying to make all these 
smarts work in a fully crash-consistent manner in conjunction with the calling code will (and does, see 
e.g. NVML) result in a fairly slow application level performance on SCM 

§  Simpler general-purpose SCM-friendly allocators that don’t require quite as many modifications to their 
persistent state are not currently available, or result in degraded performance 

§  For the foreseeable future, sticking with static pre-allocation, per-data structure free-lists, internal 
arena-based allocators, etc. appears to be a good way to achieve high performance. While this may 
come at the expense of dynamicity of SCM capacity allocation to different data structures / caches, 
given the projected total SCM capacity this seems to be a good trade-off. 



Locking vs Persistency 
q  When possible, avoid mixing SCM accesses (especially persistence) with usage of blocking 

locks (e.g. mutexes / spinlocks) 
§  Many lock-heavy algorithms implicitly rely on the fact that storing a value into memory as part of a 

critical section is an almost “free” operation (a CPU register update followed by an asynchronous – as 
far as program flow is concerned – writeback to L1 cache, around 4 cycles if lucky) 

§  However, performing a crash-consistently persisted store into SCM could involve 2-8 very expensive 
and serializing (in the memory model sense) CL flush/writeback operations, taking potentially 
10x-1000x longer than L1 store 

§  Therefore, holding a spinlock while crash-consistently updating several discrete SCM-backed memory 
locations may turn out to be much slower than expected, system wide. Even SCM loads should be 
minimized if they will usually result in cache misses (q.v. prefetching) 

§  Lock-free designs, especially those avoiding mutable shared state altogether will yield superior 
throughput with SCM, and in many cases lower latency too 

§  Where applicable, usage of oplocking should be evaluated 



SCM Pointers vs Indexes 
q  At present, in common commercial/FOSS general-purpose OSes, there is no 100% reliable 

way of ensuring that the various regions of SCM will get mapped to the same addresses 
across system restarts 
§  On the one hand, the common push in OS development now is for address space randomization to 

improve the security of the applications. On the other hand, once SCM becomes widely available, 
presumably a combination of libraries and some modest tweaks to OS syscalls can be introduced to 
work around this, either upstream or in project-specific fashion 

q  One currently popular workaround is to use a “base + offset” approach instead of storing 
actual process address-space pointers to SCM 
§  The “base” is typically a pointer to the start of the data structure. While it can change across reboots, it 

is typically easy to discover it as part of the recovery phase. It can then be stored just once 
§  The “offset” is usually an offset within the data structure or region of SCM. While it alone is not enough 

to access the data, it is guaranteed to be correct across system restarts. Typically, it also occupies less 
space than a pointer 

§  To dereference a pointer into SCM, one combines “base” + “offset” on demand 



Thank you 
Questions? 
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