

Challenges in Vertically Stackable Selectors for 3D Cross-Point Non Volatile Memories

Karl Littau, Stephen Weeks, Vijay Narasimhan, Greg Nowling, Ryan Clarke, Tony Chiang

Intermolecular Inc.

8 August 2017

Outline

- Introduction and Background

- o 3D Cross Point Architecture memory and selector
- o Selector Types
- o Challenge of 3D Integration
- **Screening and Experimentation Methodology**
	- o Materials Deposition and Etest
	- o ALD Chalcogenide Development
- **ALD Selector**
	- o Electrical Evaluation
- **Summary**

3D Cross-point Memory – Selector Architecture

Challenges with Sneak Current Paths for 3D Resistive Memory

□ Selector devices are critical to eliminating sneak current paths

Selectors needed to address performance, density and reliability requirements

Survey of NVM Selector Current Options

Ref: Chen, et al. Journal of Electroceramics (2017): 1-18. Y. Koo, K. Baek, H. Hwang, In 2016 Symp. VLSI Technol. (2016)

MIEC: Mixed Ionic Electronic Conduction IMT: Insulator Metal Transition FAST: Field Assisted Superlinear Threshold selector OTS: Ovonic Threshold Switch

□ Choice of selector materials & devices in 3D implementation requires concurrent evaluation for performance, reliability, cost and ease of integration

3D XPoint Size and Density

Die Size n mm^2

Intel/Micron 256Gb 64L TLC 3D NAND 59.0 Samsung 128Gbit 32L TLC V-NAND Samsung 16nm 64Gbit MLC NAND Samsung 86Gbit 32L MLC V-NAND Toshiba/SanDisk A19nm 64Gbit MLC NAND Samsung 256Gb 48L TLC V-NAND Toshiba/SanDisk 15nm 128Gbit MLC NAND Samsung 21nm 64Gbit TLC NAND Toshiba/SanDisk 19nm 64Gbit MLC NAND Intel/Micron 256Gbit 32L MLC 3D NAND Intel/Micron 384Gbit 32L TLC 3D NAND Micron 16nm 128Gbit MLC NAND Intel/Micron 20nm 128Gbit MLC NAND Intel/Micron 128Gb 3D XPoint

69.0

86.0

87.0

94.0

100.0

100.0

103.0

Size and density most similar to planar NAND

Critical litho for each layer may be cost disadvantage vs. 3D NAND type flow with increasing layer counts

Bit Density

Density in Gbit/mm^2 - Higher Is Better

Intel/Micron 256Gb 64L TLC 3D NAND Samsung 256Gb 48L TLC V-NAND Intel/Micron 384Gbit 32L TLC 3D NAND Samsung 128Gbit 32L TLC V-NAND Intel/Micron 256Gbit 32L MLC 3D NAND Toshiba/SanDisk 15nm 128Gbit MLC NAND Samsung 86Gbit 32L MLC V-NAND Micron 16nm 128Gbit MLC NAND Samsung 16nm 64Gbit MLC NAND Toshiba/SanDisk A19nm 64Gbit MLC NAND Intel/Micron 20nm 128Gbit MLC NAND Intel/Micron 128Gb 3D XPoint Samsung 21nm 64Gbit TLC NAND Toshiba/SanDisk 19nm 64Gbit MLC NAND

4.34

3D Vertical NVM – Conformal Selectors:

Y. Deng, et al, IEEE Int. Electron Devices Meet. (2013), p. 25.7.1–25.7.4.

□ Compared to 3D X-point, the # of critical masks relatively 3D Cross-no mas independent of the # of stacks. of critical □ Compared to VNAND, Vertical ReRAM \sim smaller cell area and \sim shorter stack height. # of memory stacks **V-RRAM V-NAND Poly Switching material** channel **Electrode** (direct tunneling **CTF stack** $limited > 5 nm$ **WL** Short ch. effect **WL** leakage · Vertical coupling **Charge spreading** WL J.D. Choi, Samsung, 2011 VLSI, p. 178. **SAMSUNG** $9/33$ **ELECTRONICS**

INTERMOLECULAR

Need a conformal selector or self regulating cell (perhaps difficult to realize)

ALD Chalcogenides (ChG)

Key challenges

- Chalcogenides are used in advanced NVM applications
- 3D Vertical NVM architecture requires highly conformal deposition processes (e.g. ALD)
- Layered binaries require uniform composition and interface control
- ALD chalcogenide chemistry is complex and not well understood (i.e. not as simple as reactions with $O₃$ or $NH₃$)
- Elemental ALD is desirable to adjust stoichiometry of base system as memory/selector behavior is composition dependent
- Simplest chemistry is desired which also achieves performance requirements (e.g. stoichiometry, step coverage, thermal stability, electrical performance)

A-30 300mm ALD chamber with in-situ spectroscopic ellipsometry

In-situ ALD Te growth monitoring on SiO2

ALD Chalcogenide Selector Screening

Select Promising Compositions (Leverage PVD Data/Modelling)

Screen ligands/Develop ALD Unit Processes

Test ALD Stacks and Nanolaminates

RMOLECULAR

Electrical

Electrical Response Feedback to Refine

ALD Chalcogenide Selector Initial Results

- Elemental ALD Chalcogenide
- Deposition rate $~1$ Å/cycle
- 250nm, 24:1 AR trench structures

INTERMOLECULAR

- ALD Chalcogenide Selector; elemental ALD to adjust composition of compound
- Conventional TiN Electrodes
- Pulse-mode electrical test (pulse width $= 100$ ns) shows clear, repeatable selector operation on 350 nm CD devices with forming event visible during first cycle
- Selector threshold voltage between 1.4-1.6V

ALD Chalcogenide Selector Initial Results

- Elemental ALD Chalcogenide
- Deposition rate $~1$ Å/cycle
- 250nm, 24:1 AR trench structures

- Voltage (V)
- ALD Chalcogenide Selector; elemental ALD to adjust composition of compound
- Conventional TiN Electrodes
- Pulse-mode electrical test (pulse width $= 100$ ns) shows clear, repeatable selector operation on 350 nm CD devices with forming event visible during first cycle
- Selector threshold voltage between 1.4-1.6V

- 3D NVM architectures will require series connected non-linear selector elements
- Choice of selector materials & devices requires concurrent evaluation for performance, reliability, cost and ease of integration
- A conformal selector with layer by layer compositional control can open up potential integration schemes and provide additional materials engineering control
- Initial feasibility using ALD Chalcogenide selectors with good conformality and similar electrical performance to PVD demonstrated

