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3D Cross-point Memory – Selector Architecture
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Challenges with Sneak Current Paths for 3D Resistive Memory

 Selector devices are critical to eliminating sneak current paths

 Selectors needed to address performance, density and reliability requirements
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* Ref: Chen, et al. Journal of Electroceramics (2017): 1-18.

J.J. Huang, et al, IEEE Int. Electron Devices Meet. (2011), 

p. 31.7.1–31.7.4

Ni/TiO2/Ni/HfO2/Pt



Survey of NVM Selector Current Options

 Choice of selector materials & devices in 3D implementation requires concurrent evaluation for 

performance, reliability, cost and ease of integration
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Type MIEC IMT Tunnel barrier FAST OTS Binary OTS

Material Cu-based NbO x TaO /TiO /TaO Unknown AsTeGeSiN SiTe

Source IBM, 2012 POSTECH, 2015 POSTECH, 2014 Crossbar, 2014 SAIT, 2012 POSTECH, 2016

On. J [MA/cm2] 0.08 (0.9 V) 4 >10 (2 V) 3 10 10

Off. J [kA/cm2] 0.004 23 10 0.001 2 0.01

Selectivity 104 >102 102 >106 >103 106

SS [mV/dec] 100 <10 200 <5 <50 <1

Delay Time [ns] 50 ? 20 30 20 10

Transition [ns] 15 <50 <20 5 5 2

Process T. [°C] ? RT 300 300 ? RT

MIEC: Mixed Ionic Electronic Conduction

IMT: Insulator Metal Transition

FAST: Field Assisted Superlinear Threshold selector

OTS: Ovonic Threshold Switch

Ref: Chen, et al. Journal of Electroceramics (2017): 1-18.

Ref: Y. Koo, K. Baek, H. Hwang, In 2016 Symp. VLSI Technol. (2016)



3D XPoint Size and Density

5 Source: http://www.anandtech.com/show/11454/techinsights-publishes-preliminary-analysis-of-3d-xpoint-memory  

Size and density most similar to planar NAND

Critical litho for each layer may be cost 

disadvantage vs. 3D NAND type flow with 

increasing layer counts



3D Vertical NVM – Conformal Selectors:

Need a conformal selector or self regulating cell (perhaps difficult to realize)
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Y. Deng, et al, IEEE Int. Electron Devices Meet. (2013), p. 25.7.1–25.7.4.
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ALD Chalcogenides (ChG)

Key challenges 

 Chalcogenides are used in advanced NVM applications

 3D Vertical NVM architecture requires highly conformal 

deposition processes (e.g. ALD)

 Layered binaries require uniform composition and 

interface control

 ALD chalcogenide chemistry is complex and not well 

understood (i.e. not as simple as reactions with O3 or 

NH3)

 Elemental ALD is desirable to adjust stoichiometry of 

base system as memory/selector behavior is 

composition dependent

 Simplest chemistry is desired which also achieves 

performance requirements (e.g. stoichiometry, step 

coverage, thermal stability, electrical performance)

A-30 300mm ALD chamber with 

in-situ spectroscopic ellipsometry

In-situ ALD Te growth monitoring on SiO2

Time



ALD Chalcogenide Selector Screening
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ALD Chalcogenide Selector Initial Results
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ALD Chalcogenide Selector Initial Results
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Summary

 3D NVM architectures will require series connected non-linear selector elements

 Choice of selector materials & devices requires concurrent evaluation for performance, 

reliability, cost and ease of integration

 A conformal selector with layer by layer compositional control can open up potential 

integration schemes and provide additional materials engineering control

 Initial feasibility using ALD Chalcogenide selectors with good conformality and similar 

electrical performance to PVD demonstrated
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