

3D XPoint: Current Applications and Device Innovation

August 8, 2017

3D Cross-point Memory – Selector Case Studies

Challenges with Sneak Current Paths for 3D Cross-point Memory

Selector devices are critical to eliminating sneak current paths

Disruptive selectors needed to address performance, density and reliability requirements

Memory Materials and Device Innovation Needs:

PVD Site-Isolated Deposition

P-30 PVD

Aperture - defines spot size on wafer

300 mm wafer on pedestal - pedestal moves to define spot location

Fxample for a Ternary Material

Each site is an independent experiment

- Each layer can be deposited by 1 to 4 sputter sources
- Multiple layers can be deposited at one site
- Aperture: defines area where material is deposited; there is no intermixing of areas
- Shutters for Aperture and Target: prevents cross-contamination between layers & targets
- Recipe: includes target cleaning & conditioning before each deposition

IMI's NVM Screening Methodology

Material Understanding		Parameter	Key Results
<image/> <figure><figure></figure></figure>	CompositionImage: CompositionImage: CompositionSelect Promising Compositions	Non-linearity	> 7 dec/V
		Threshold Voltage	Tunable (1 to 5V)
		Leakage (I _{off})	< 1E ⁻ 10 at 90nm
		Switching time	< 10ns
		Endurance	> 1E9 cycles
		Electrical/ Reliability	
<image/>		10-3 10-4 (10-5 10-6 10-7 10-8 10-9 -2	$\frac{10^{-3}}{10^{-4}}$

Consistent/High Throughput Execution: A Development Accelerator 6 month Snapshot (Oct 1st - Mar 31st 2017)

High Throughput Experimentation is the engine that enables and accelerates materials/compositions discovery for memory development

Selector Programs — Key Results

Screened 1000's of MSM, MIEC and OTS compositions over 5 year period

- Selector behavior observed in several systems with different mechanisms
- Repeatable selector performance demonstrated
- Tunable threshold voltage
- Hyper-abrupt turn-on (> 7 dec/V)
- $I_{off} < 1E^{-}10$ at 90nm critical dimension
- Switching time < 10ns
- Endurance > 1E9 cycles
- Bipolar operation
- Thermal stability tunable with composition

- Customer and IMI teams have collaborated on achieving such challenging device goals
- Rapid learning with dep and test vehicle

