

Requirements for Non-volatile Memory in Automotive Applications

Michael Huonker, Daimler AG Research & Development Santa Clara CA, August 2017

Mercedes-Benz The best or nothing.

NVM Storage in Infotainment

Mercedes-Benz

Our View on NVM Memory Trends in Infotainment

Requirements of Infotainment Systems on Flash Memory

Fast System Startup

High Read Speed: New interfaces UFS, PCIe Short initialization time after power up

Early Adoption of New Technology

No time gap between Automotive and CE Latest technology: 15 nm planar, 3D, TLC

Quality

Quality: 0 ppm target, 8d reports Mercedes-Benz MBN-10527 Specification 2nd source with standard interfaces

Energy Efficiency

Limited system cooling capacity Shared power budget for SoC, RAM, Flash Memory, Amplifier, Interfaces, etc.

Robustness / Endurance Power fail save Temperature -40..+105 °C Data Retention for years/months

Scalability Memory sizes between 4 GB and 512 GB Read/Write Bandwidth options 1 – 4 Lanes

Diagnosis Health status of the device Available write budget

Package space
Direct mounted components (BGA)

Mercedes-Benz

Generic Development Schedule and Steps

Mercedes-Benz

Example for extended Automotive Requirements: UFS Diagnosis

Specific Functions for Automotive Applications required

Every part in our system has to be diagnosed and we need detailed information about the device health status.

Diagnosis is used for:

- Development
- Field diagnosis
- Failure analysis
- \rightarrow JEDEC diagnosis standard is not enough

Common extended diagnosis commands among memory vendors needed

Extract of required Diagnosis commands

Mercedes-Benz

 \rightarrow

Quality Requirement: MBN-10527

Environment: Car

80% of the innovations driven by semiconductors
Number of Semiconductor devices grow rapidly
Long lifetime of unit
Harsh environment: Thermal shock, Temperature from -40..+80°C, Vibration, Long periods without power

Parameter	Consumer	Industrial	Automotive
Temperature	0 - 40 °C	-10 - 70°C	-40 - 160°C
Operation Time	2 – 5 years	5 -10 years	> 15 years
Humidity	Low	Environment	0 % - 100 %
Field Failure Rate	< 10 %	<< 1 %	0 ppm Target
Documentation	Minimal	Conditional	PPAP, 8D, PCN Management
Supply	Average 1 year	~ 2- 5 years	Up to 15 years

Targets for MBN-10527

Comparison of semiconductor manufacturers Reduce semiconductor related design/quality/reliability/supply issues MBN-10527 includes ISO/TS 16949 and AEC-Q

Mercedes-Benz

Summary

- Automotive development cycles vs. early technology adoption
 - Working/Engineering Samples 30/24M before SOP
 - Robust supply of components for whole product lifetime of 15Y
 - Long-established technologies not acceptable for new systems
 - Most advanced performance and capacity required for every car generation
- \rightarrow Paradigm shift towards Automotive Industry as technology driver
- Automotive Requirements beyond consumer standard
 - E.g. for diagnosis extensions necessary
- Storage Demand in Automotive is rapidly growing

Mercedes-Benz