

Using F-RAM for Automotive Event Data Recording

Douglas Mitchell

Flash Memory Summit 2017 Santa Clara, CA

1

- F-RAM Technology
- F-RAM vs Competition
- F-RAM Automotive Applications
- F-RAM Portfolio
- Ultra-Low-Energy (ULE) F-RAM

Flash Memory Summit 2017 Santa Clara, CA

F-RAM Technology

Electric field

Cypress F-RAM Data Retention

Primary F-RAM reliability measure is the retention lifetime of a capacitor cell that has been previously stored in a polarization state for an extended time and then written to the opposite polarization state $(OS)^1$

Retention Specs for Cypress F-RAMs²:

Cypress F-RAM	Data Retention
AEC-Q100 Grade 3 (G3)	>10 yrs @ 85ºC
AEC-Q100 Grade 2 (G2)	>5 yrs @ 105ºC
AEC-Q100 Grade 1 (G1)	>11k hrs @ 125ºC

The specifications can be converted to multi-temperature profiles

Example for G1 F-RAM³:

Temperature	Time Factor	Profile Life
(T)	(t)	L(P)
T1=125°C	10%	
T2=105°C	15%	> 10.40
T3=85°C	25%	> 10.46 years
T3=55°C	50%	

¹ This type of retention is called as Opposite State (OS) retention. F-RAM has unlimited Same State (SS) retention life within the specified temperature range ² Conditions: 130nm 2T2C F-RAMs (all AEC-Q-100 Qualified F-RAMs are currently 2T2C)

 3 G3 Stress temperature T_o= 125°C, G2 and G1 Stress temperature T_o= 150°C

Cypress F-RAM Endurance

Memory endurance is specified as number of times that a memory cell can be written-to or erased

- F-RAM endurance tests are difficult to practically perform due to very high endurance performance of F-RAM.
- Innovative test methodologies are needed to determine the endurance limit of 0.13µm F-RAM product
- Endurance behavior of scribe line test structures i.e., intrinsic material can be measured with acceleration
- F-RAM device endurance can be measured up to 10¹³ cycles through lab tests¹ and extrapolated to 10¹⁵ based on slope of the curve for intrinsic material
- Signal margin vs. cycles for both F-RAM device and intrinsic material shows higher signal margin of the F-RAM device at 10¹⁵ cycles compared with the initial value²

¹ Continuous 1 byte writes on FM22L16 at speed of 110ns cycle time (i.e., 220ns for writing both state): 0.025 days for 10¹⁰ cycles, 2.55 days for 10¹² cycles, 255 days for 10¹⁴ cycles Ref. http://www.cypress.com/?docID=44702

Intrinsic material and device endurance characteristics:

² Cypress takes a guard band and specs up to 10¹⁴ (instead of 10¹⁵) on datasheets for endurance

ULE F-RAM vs. Competition

	CYPRESS"	TECHNOLOGIES The MRAM Company	
<u>Feature</u>	ULE F-RAM	<u>MRAM</u>	<u>EEPROM</u>
Density Range	2Mb-16Mb ¹	256Kb-4Mb	1Kb-2Mb
Interface Frequency (Maximum)	54-MHz DDR	108-MHz SDR	5-MHz SDR
Write Bandwidth (Mbps) ²	432	432	0.197
Hibernate Current ³	0.1 µA	15 µA	N/A
Deep Power-Down Current ³	0.65 µA	N/A	N/A
Standby Current ³	1.0 µA	90 µA	0.16 µA
Active Write Current ⁴	0.6 mA	26.9 mA	3 mA
Write Energy for 4Mb $(\mu J)^{4, 5}$	1,510	67,700	192,000
Product Battery Life (Days) ⁶	9,549	213	6.1
Write/Program Latency	0 ms	0 ms	10 ms
Endurance (Cycles)	10 ¹⁴	Unlimited	10 ⁶

¹Current Cypress F-RAM portfolio offers a density range of 4Kb to 4Mb

² Conditions: 10-ms Page write for 2Mb 5-MHz SDR EEPROM

³ Conditions: 4Mb, typical current, 2.7 to 3.6 V ⁴ Conditions: 4Mb density, maximum current, 5-MHz SPI, 2.7 to 3.6 V

⁵ Condition: 4Mb burst write at 5-MHz SPI. Example: with a CR2032 battery, ULE F-RAM provides 1,573,551 writes vs. Fujitsu F-RAM's 429,150, MRAM's 35,098 and EEPROM's 12,376

⁶ 16-byte samples at a sampling interval of 20-ms with a CR2032 battery

Competitive Comparison

ADAS¹

F-RAM and Flash Value

Design Challenges

- Capture real-time data instantly and store data on power loss
- Store boot code and video overlays reliably on power loss
- Ensure sufficient write-cycle endurance to log data for 20 years
- Design with AEC-Q100-qualified memory components

Cypress F-RAM and Flash Solutions

- Captures data instantly with no soak time² requirement and Flash stores boot code data/STORE video overlays reliability
- Provides endurance for 100 trillion write cycles to log data every 10 µs for 20 years and Flash provides endurance for 100 K write cycles to store data for 20 years
- Provides AEC-Q100-qualified memory components

¹ Advanced Driver Assistance System

² The approximate 5 ms required to complete an EEPROM Page Write after the data is presented at the input buffers

Smart Airbag System

F-RAM and Flash Value

Design Challenges

- Capture real-time sensor data and store data on power loss
- Ensure sufficient write-cycle endurance to log data for 20 years
- Design with AEC-Q100-qualified memory components

Cypress F-RAM Solution

- Captures data instantly with no soak time¹ requirement
- Provides endurance for 100 trillion write cycles to log data every 10 µs for 20 years
- Provides AEC-Q100-qualified memory components

¹ The approximate 5 ms required to complete an EEPROM Page Write after the data is presented at the input buffers

Smart Airbag by Bosch

VDTR¹

F-RAM Value

Design Challenges

- Capture real-time data instantly on power loss
- Ensure sufficient write-cycle endurance to log data over a 20year product lifespan
- Design with AEC-Q100-qualified memory components

Cypress F-RAM Solution

- Captures data instantly with no soak time requirement
- Provides endurance for 100 trillion write cycles to log data every 10 µs for 20 years
- Provides AEC-Q100-qualified memory components

¹ Vehicle Traveling Data Recorder

Vehicle Traveling Data Recorder by HUABAO

F-RAM Portfolio

LPC¹ F-RAM **Processor Companion** Parallel F-RAM CY15V/B104/8Q/S CY15B102/4Q/S CY15B104Q FM22L16/LD16 4/8Mb 2/4Mb 4Mb; 2.0-3.6 V 4Mb: 2.7-3.6 V 1.71-1.89V / 1.8-3.6 V 1.71-1.89V / 1.8-3.6 V 40-MHz SPI; Ind 55 ns; x8; Ind 108-MHz QSPI7, Ind3 512Kb - 4Mb 108-MHz QSPI7, Auto A3, Auto E4 FM25V20A FM24V10/VN10 CY15B102Q FM28V102A FM28V202A 2Mb: 2.0-3.6 V 1Mb; 2.0-3.6 V 1Mb; 2.0-3.6 V 2Mb; 2.0-3.6 V 2Mb; 2.0-3.6 V 40-MHz SPI; Ind² 25-MHz SPI; Auto E3 3.4-MHz I2C; Ind, Auto A 60 ns; x16; Ind 60 ns; x16; Ind FM25V05 FM25V10/VN10 FM24V05 CY15B101N CY15B102N 512Kb; 2.0-3.6 V 1Mb; 2.0-3.6 V 512Kb; 2.0-3.6 V 1Mb; 2.0-3.6 V 2Mb; 2.0-3.6 V 40-MHz SPI; Ind, Auto A 3.4-MHz I2C; Ind, Auto A 40-MHz SPI; Ind, Auto A 60 ns; x16; Auto A 60 ns; x16; Auto A FM25V02A/W256 FM24V02A/W256 FM33256 FM28V020 FM18W08 256Kb: V02A: 2.0-3.6 V 256Kb: V02A: 2.0-3.6 V 256Kb: 3.3V: 16-MHz SPI 256Kb; 2.0-3.6 V 256Kb; 2.7-5.5 V W256: 2.7-5.5 V W256: 2.7-5.5 V Ind; RTC5; Power Fail 70 ns: x8: Ind 70 ns; x8; Ind 40-MHz SPI; Ind, Auto A 3.4-MHz I2C; Ind, Auto A Watchdog; Counter FM31256/31(L)278 FM25V01A FM24V01A FM1808B FM16W08 256Kb; 3.3, 5.0V; 1-MHz 128Kb; 2.0-3.6 V 128Kb; 2.0-3.6 V 256Kb; 5.0 V 64Kb; 2.7-5.5 V I2C: Ind: RTC: Power 40-MHz SPI; Ind, Auto A 3.4-MHz I2C; Ind, Auto A 70 ns; x8; Ind 70 ns; x8; Ind Fail; Watchdog; Counter 4Kb - 256Kb FM3164/31(L)276 FM25640/CL64 FM24C64/CL64 64Kb; 3.3, 5.0 V; 1-MHz 64Kb; 3.3, 5.0 V 64Kb; 3.3, 5.0 V I2C; Ind; RTC; Power 20-MHz SPI: Ind. Auto E4 1-MHz I2C: Ind. Auto E Fail; Watchdog; Counter FM25C160/L16 FM24C16/CL16 16Kb; 3.3, 5.0 V 16Kb; 3.3, 5.0 V 20-MHz SPI; Ind, Auto E 1-MHz I2C; Ind, Auto A FM25040/L04 FM24C04/CL04 4Kb; 3.3, 5.0 V 4Kb; 3.3, 5.0 V 20-MHz SPI; Ind, Auto E 1-MHz I2C; Ind, Auto A Concept Development Sampling Production ¹ Low-pin-count ² Industrial grade -40°C to +85°C ³ AEC-Q100 -40°C to +85°C ⁴ AEC-Q100 -40°C to +125°C

¹ Low-pin-count ² Industrial grade -40°C to +85°C ³ AEC-Q100 -40°C to +85°C ⁴ AEC-Q100 -40°C to +125°C ⁵ Real-time clock ⁶ Ultra-Low-Energy ⁷ Quad serial peripheral interface

 Concept
 Development
 Sampling
 Production

 Industrial
 Industrial
 Industrial
 Industrial
 Industrial

2Mb-to-16Mb ULE F-RAM Family

Features

High Speed

- 50-MHz Serial Peripheral Interface (SPI)
- 54-MHz Double Data Rate (DDR) / 108-MHz Single Data Rate (SDR) Quad SPI

Low Power

- Operating voltage range: 1.71-1.89 V, 1.80-3.60 V
- Ultra-low (0.10-µA) hibernate current
- Ultra-low (0.65-µA) deep power-down current
- Ultra-low (1.00-µA) standby current

Non-volatile

- 100-trillion read/write cycle endurance
- 100-year data retention
- Multiple operating temperatures
- Commercial temperature range: 0°C to +70°C
- Industrial temperature range: -40°C to +85°C
- Automotive (AEC-Q100) temperature range grade A: -40°C to +85°C
- Automotive (AEC-Q100) temperature range grade E: -40°C to +125°C

Family Table

Density	Standby Current (Typ.)	Active Current (Typ.)	Packages
2Mb	1µA	3mA	SOIC (8), GQFN (8)
4Mb	1µA	3mA	SOIC (8), GQFN (8)
8Mb	1µA	3mA	SOIC (8), GQFN (8)
16Mb	1µA	3 mA	SOIC (8)

Product Overview