



## 3D Flash Leads to More Powerful Embedded Applications

Phison Electronics Corp.

Thomas Hsiao
Sr. Manager, Embedded Business
Thomas\_hsiao@phison.com

PHISON's presentation contains forward-looking statements subject to significant risks and uncertainties. Actual results may differ materially from those contained in the forward-looking statements. Information as to those factors that could cause actual results to vary can be found in PHISON's annual reports and other documents filed from time-to-time with the TWSE. Except as required by law, we undertake no obligation to update any forward-looking statement, whether as a result of new information, future events, or otherwise.



#### **Outline**



- Embedded SSD Unique in Every Way
- The Benefits as migrating to 3D Technology
- The Challenges on 3D NAND





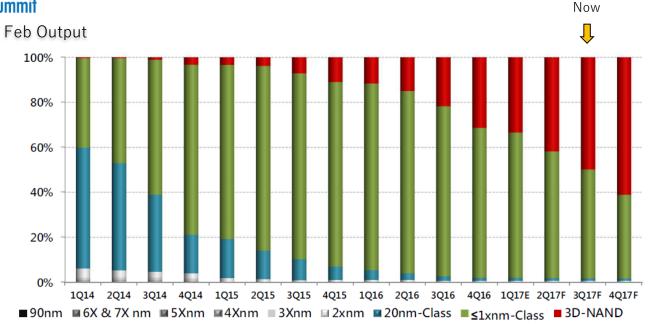
#### Embedded SSD - Unique in Every Way

Validation

Flash Memory Summit

#### ·Read Intensive · Compatibility · Vaulting ·pFail •4K Random ·Pattern scheme ·Mix WL Environment ·SATA Link Loss ·Read Only Mode ·Logging Encryption TRANSPORTATION FACTORY KIOSK/GAMING/ **AUTOMOTIVE** VIDEO AUTOMATION DIGITAL SIGNAGE

SURVEILLANCE


**Usage Behavior** 

**Features** 



#### NAND Technology Trend





- 2D NAND: No more migration after 1Znm process
- 3D NAND: >50% after Q4 17'





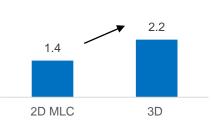
### 3D Advantage Over 2D NAND

|               | 2D MLC       | 3D TLC                       |
|---------------|--------------|------------------------------|
| Cost per bit  | High \$\$    | Low \$                       |
| Die Density   | 64Gb and Up  | 128Gb and Up 🗸               |
| Max Data Rate | 333- 400MT/s | 400- 533MT/s ✓               |
| Power         | =            | Up to 22% Power Efficiency 🗸 |
| Endurance     | =            | = (with LDPC)                |
| Package       | =            | Footprint match with 2D MLC  |





#### 3D Implement Challenges


- Challenge 1: **Throughput** impact on small capacity
- Challenge 2: Latency impact due to page # increase





### Potential Impact 1: Throughput

- Problem: 1. Mono density double leads to less chip enable
  - 2. 3D flash program time increases



tprog (ms)

Solution: Full program sequence (FPS) technology
 MB/s per CE speed improvement: 25MB/s → 45MB/s

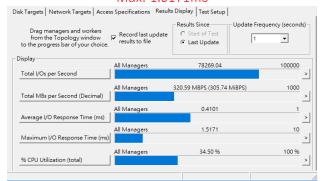
|                    | 2D MLC           | 3D TLC<br>(w/o FPS) | 3D TLC<br>(with FPS) |
|--------------------|------------------|---------------------|----------------------|
| Performance (32GB) | 520/100          | 550/50              | 550/90               |
|                    | (64Gb x 4 → 4CE) | (128Gb x 2 → 2CE)   | (128Gb x 2 → 2CE)    |





#### Potential Impact 2: Latency

- Problem: due to page # per block increase (256 → 768), it prolongs garbage collection time to free up one spare block which result to worse latency performance.
- Solution: Proprietary firmware GC optimization


#### 2D MLC 480GB

Avg: 0.4197ms Max: 3.2459ms

| Drag managers and workers<br>from the Topology window<br>to the progress bar of your choice. | Record last update results to file | Results Since C Start of Test C Last Update | pdate Frequency (second |
|----------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------|-------------------------|
| Display                                                                                      | All Managers                       | 76250.81                                    | 100000                  |
| Total I/Os per Second                                                                        |                                    |                                             |                         |
| Total MBs per Second (Decimal)                                                               | All Managers                       | 312.32 MBPS (297.85 Mil                     | BPS) 1000               |
|                                                                                              | All Managers                       | 0.4197                                      | 1                       |
| Average I/O Response Time (ms)                                                               |                                    |                                             |                         |
|                                                                                              | All Managers                       | 3.2459                                      | 10                      |
| Maximum I/O Response Time (ms)                                                               |                                    |                                             |                         |
|                                                                                              | All Managers                       | 34.79 %                                     | 100 %                   |
| % CPU Utilization (total)                                                                    |                                    |                                             |                         |

#### 3D TLC 480GB

Avg: 0.4101ms Max: 1.5171ms





### Take-Aways



- 3D NAND anticipates continued MLC/TLC bit cost reduction while driving density growth over next years.
- The traditional rule of thumb still intact- Keeping flexibility, responsive, adaptive.
- 3D NAND brings benefits of density, power, endurance.
- Controller vender plays key role for conquering key challenges (throughput and latency) on 3D transition in embedded market.

# For more information on Phison SSD Controllers, please visit us at

Booth #614



- Automotive
- Digital Signage
- UFS







# Thank You!