

How the emergence of 3D NAND affects Data Recovery and Erasure Verification

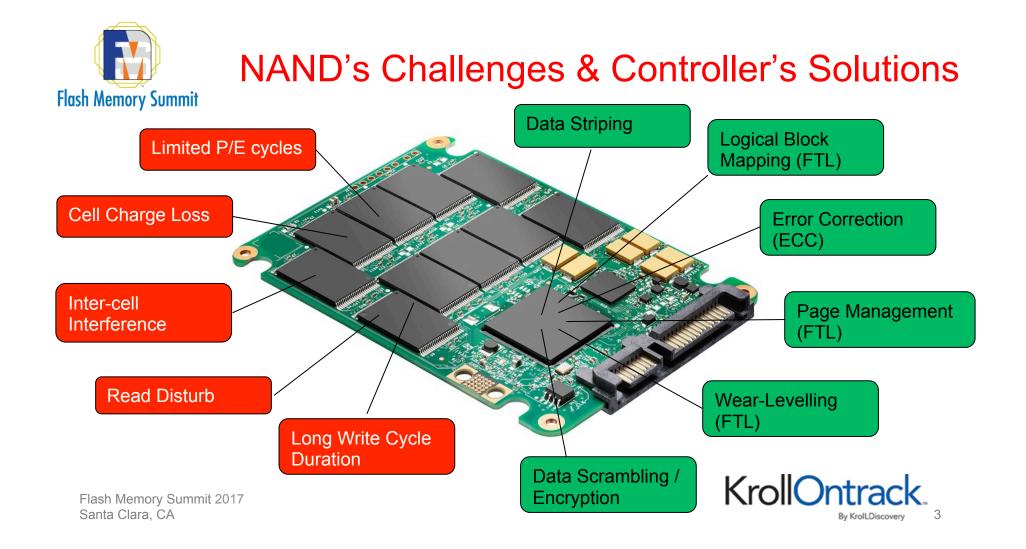
Robin England Senior Research & Development Engineer

SSD Erasure Verification Service (EVS)

Purpose

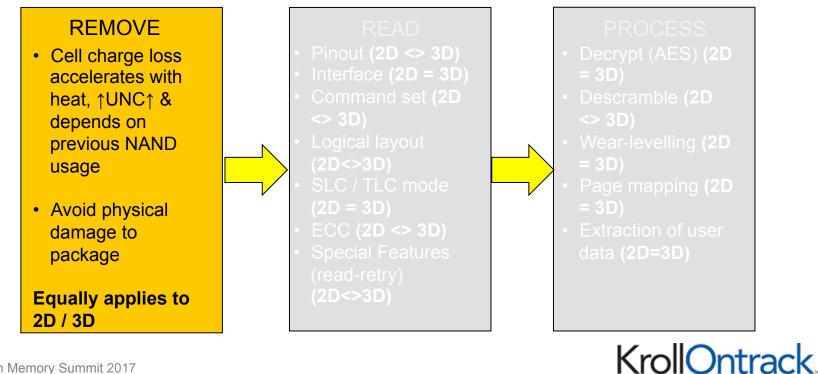
 Measures and reports on effectiveness of SSD data erasure / sanitization method

Level I (Logical)


 Read LBAs via SSD interface, look for known data pattern

Level II (Physical)

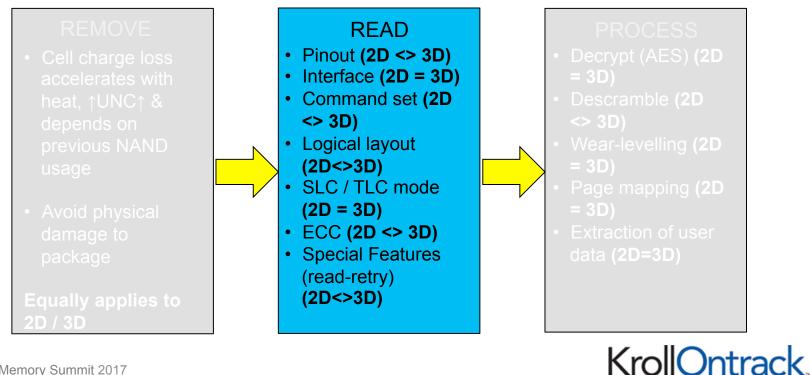
• In-depth examination of SSD NAND flash content, i.e. "Chip-Off" process



SSD Chip-Off: EVS versus Data Recovery

Factor	EVS	Data Recovery	
Data Striping	×		🗙= IRRELEVANT
Logical Block Map	×	\checkmark	
ECC	\sim		
Page Management	×		
Wear-levelling	×		= MUST SOLVE
Data Scrambling	\sim		
Encryption	\sim		

Flash Memory Summit SSD Chip-Off: Remove NAND (2D / 3D)



Flash Memory Summit 2017 Santa Clara, CA

5

By KrolLDiscover

Flash Memory Summit SSD Chip-Off: Read NAND (2D / 3D)

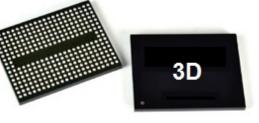
6

By KrolLDiscoven

Reading 3D NAND: New Challenges

By Kroll Discow

Read-Retry and ECC cycle BCH (Bose–Chaudhuri–Hocquenghem) **Read Page** hard-decision decoding with read-retry Set new LDPC – (Low-Density Parity Check) Apply ECC read supports soft-decision decoding with reference read-retry voltage OK? Adaptive LDPC NO code changes throughout life of NAND smaller (weaker) ECC when new YES • larger (stronger) ECC as NAND ages Finish **KrollOntra**



Reading 3D NAND: New Challenges

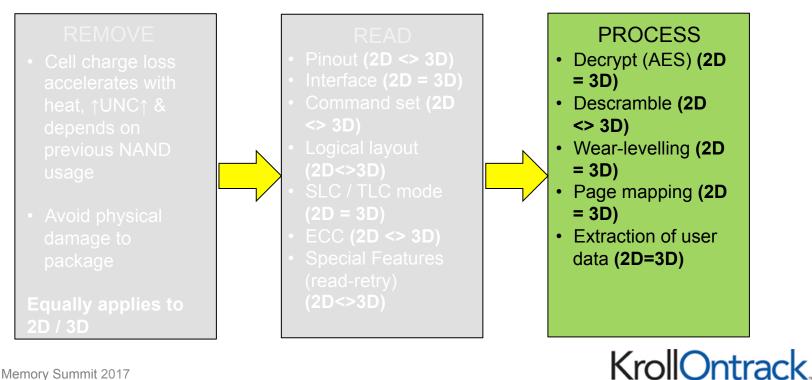
Eile Edit View Setu	up <u>T</u> ools <u>M</u> arkers <u>R</u> un/!	Stop W <u>a</u> veform <u>W</u> ind	low <u>H</u> elp					- 5
D 📽 🖬 🎒 🗛 🕯	n 🗗 ዞ T 🍽 🍳	@ ♥ ┣• #	Tre ta Tre		. 4 77	HY, 051 🕨	۵ 🔳 🕹	3 🔳
M1 to M2 = 14.844 n	s							
Scale 100 ns/div		lay 461.667 ns	B K 11 T 1					
Bus/Signal	-138.3 ns -38.33 ns	61.67 ns 161.7 ns	261.7 ns 361.7 ns	461.7 ns 561.7 ns	661.7 ns 761.7 ns			1.062 us
Time		4			73	825 ns	1111	-
	7E6				XXX 7F6		7EE	
[]VSP3				1				
VSP4		1		0		1		
WP#				1				
RB								
WE#	1	0 1 0 1 0	1 0 1 0 1 0 1		0101	0	1	Ξ
CLE	0 W	1 # = 1 (45 ns)		0				
ALE	0			1			0	
RE#								
[] DQS				0				
œ-]DQ	00	(12	03 16 15		<u> </u>		50	-
< +								,
0verview	Waveform-1	Listing-1	Listing-2					
For Help, press F1			Status					Offlin
👩 🛛 🔰	MI 🔆 🖗	6	100		DE 🚎	🤗 🖁 😑 (2 🌗 🧄	14:45 07.07.2017

Flash Memory Summit 2017 Santa Clara, CA

- Vendor Specific Signals
- Extended Addressing
- Proprietary Commands
- New Set Features parameters
- New Read-Retry thresholds
- Determining 3D NAND logical structure

	-0-			•						-	-	-
OC	000	00	00		00	0	0	0	0	0	0	
	000		00	0								
				5	- 0	100						1
		00		9	-	0						
00	0.00				. 0		۲	۲	۲			
000	000			21	1.0		0	۲	0	۲	0	
500				2.		0	۲					
			00		<u> </u>	۲				0		
OC			0.4				۲	۲	0	۲	0	
				20								
00				\sim								e
			00	~6								1
			00									
						1						
						0						
00					Sce							d
00)	g		ø					
00			00	>	.0						0	
				Ъ.	. 6	-					0	
			90	14	~ C		0	Q	9	0	0	
						-						
		00	00		Q.Q	0	0	0	0	0	0	
1 2			TI	1	111			-		10	00	-

SSD Chip-Off: Read NAND


Flash Memory Summit 2017 Santa Clara, CA

- Kroll Ontrack USB "FlashReader" custom hardware solution with interchangeable adapters
- Support for wide range of packages
- Dynamic core voltage control
- Split Vcc and VccQ
- Precise interface timing control

SSD Chip-Off: Process NAND

10

By KrolLDiscovery

Process 3D NAND: New Challenges

X, Y and Z-axis directional cell-to-cell interference requires new scrambling / de-correlation algorithm

Flash Memory Summit 2017 Santa Clara, CA

Z-axis

- A "Chip-Off" approach is vital for physical-level Erasure Verification on SSD plus some SSD failures mean "Chip-Off" the only way to recover data
- Noticeable rapid shift from 2D to 3D NAND in all solid-state applications data recovery service providers need to keep on top of this technology
- 3D NAND introduces new challenges for both reading and processing raw data for chip-off data recovery and Erasure Verification
- Ongoing support from drive and controller manufacturers is crucial reduces the research efforts needed to get customers' data back and chip-off then becomes cost-effective

Thank You!

Please visit us at booth #700

