

## NVMe Over Fabrics (NVMe-oF)

#### High Performance Flash Moves to Ethernet

#### Rob Davis Vice President Storage Technology, Mellanox



## Why NVMe over Fabrics?





## New Storage Performance Creates a Bottleneck





# New Storage Performance Creates a Bottleneck





# New Storage Performance Creates a Bottleneck





# NVMe Technology Background

- Optimized for flash
  - Traditional SCSI designed for disk
  - NVMe bypasses unneeded layers
  - Dramatically reducing latency







# NVMe Technology Background



- Direct connection on PCIe from SSD to CPU
- No wire technology translation needed
  - Higher Performance
- Less components
  - Lower power
  - Lower cost(not yet)

# NVMe Performance vs. sATA

 2.5x-4x more bandwidth

**Flash Memory Summit** 

- 40-50% lower latency
- Up to 4x more IOPS





# Analyst Predict Rapid Growth

- ~50% of enterprise servers and storage appliances will support NVMe by 2020
- ~40% of all-flash arrays will be NVMe-based by 2020
- Shipments of NVMe SSDs will grow to 25+ million by 2020



http://www.storagenewsletter.com/rubriques/market-reportsresearch/nvme-market-at-57-billion-by-2020-with-95-cagr-g2m-research/



# The Network and the Network Protocol Must get Faster





# Faster Network Wires Solves ½ the Problem



Ethernet & InfiniBand End-to-End 25, 40, 50, 56, 100Gb Going to 200 and 400Gb



# Faster Storage Needs a Faster Network





# "NVMe over Fabrics" Enables Storage Networking of NVMe

- Sharing NVMe-based storage with multiple servers
  - Better utilization: capacity, rack space, and power
  - Better scalability
  - Management
  - Fault isolation





# NVMe over Fabrics (NVMe-oF) Industry Standard

- NVMe.org developed the specification
  - Many contributing companies
  - Version 1.0 completed in June 2016
- Early pre-standard demos:
  - Mellanox, Samsung, Intel, Micron, PMC, Mangstor, WD, others
  - Version 1.0 at Flash Memory Summit August of 2016



NAB April 2015

Showed high IOPs and bandwidth and extremely low latency



## Some NVMe-oF Demos at FMS and IDF 2016

#### **Flash Memory Summit**

- Samsung ٠
- E8 Storage ٠
- Micron ٠
- Newisis (Sanmina) ٠
- Pavilion Data in Seagate booth •
- Mangstor ٠

#### **Intel Developer Forum**

- Samsung •
- HGST (WD) ٠
- Intel ٠
- Newisis (Sanmina) ٠
- E8 Storage ٠
- Seagate ٠



**icron** 



# NVMe-oF Demos FMS 2017

 E8, Micron, Celestica, Toshiba, Samsung, Mellanox, IBM, Kaminario, Excelero, MicroSemi, Newisys/Sanmina, Seagate/AIC, others



# Analyst Predict Rapid Growth

- 740,000 NVMe-oF adapter shipped by 2020
- RDMA NICs will claim >75% of the NVMe-oF market



http://www.storagenewsletter.com/rubriques/market-reportsresearch/nvme-market-at-57-billion-by-2020-with-95-cagr-g2m-research/



# **NVMe-oF Performance**

- Open Source Linux NVMe-oF
  Software from NVMe.org
  - Accepted in upstream kernel
  - Will be in a future RHEL





|                                     | Bandwidth (Target side) | IOPS<br>(Target side) | Num. Online cores | Each core<br>utilization |
|-------------------------------------|-------------------------|-----------------------|-------------------|--------------------------|
| BS = 4KB, 16 jobs,<br>IO depth = 64 | 5.2GB/sec               | 1.3M                  | 4                 | 50%                      |
|                                     |                         |                       |                   |                          |

Added fabric latency

~12us, BS = 512b

Flash Memory Summit 2017 Santa Clara, CA

#### https://community.mellanox.com/docs/DOC-2504

# Kernel & User Space NVMe-oF

Flash Memory Summit



- 93 usec average round trip time measured from Initiator
- ~80 usec spent in reading I/O from NVMe SSD
- Total fabric latency ~12us
- Includes time spent in block layer of initiator submitting and receiving I/Os





# Full Array NVMe-oF Performance Configuration

- Configuration
  - 1x NVMf target
  - 24x Samsung PM963 NVMe 2.5" 960GB SSDs
  - 2x 100Gb/s Mellanox ConnectX®-4 EN
  - 4x initiator hosts
  - 2x25Gb/s each
  - Open Source NVMe-oF kernel drivers





## NVMe-oF RoCE Performance



| Performanc | e Delta | 1-drive | 24-drive |
|------------|---------|---------|----------|
| Latency    | Read    | 11%     | 15%      |
|            | Write   | On par  | On par   |
| IOPS       | Read    | 10%     | 12%      |
|            | Write   | On par  | 2%       |
| Throughput | Read    | On par  | 18%      |
|            | Write   | On par  | On par   |



# Applications for NVMe-oF

- Scale-Out Storage
  - Low latency
  - High bandwidth & IOPs





# Applications for NVMe-oF

- Hyper-Converged
  - Collapse separate compute & storage
  - Integrated compute and storage nodes
  - Low latency and High bandwidth enable higher performance application support
  - Low CPU utilization







# Storage Array or Appliance Backend Scale-out





# Storage Array or Appliance Backend Scale-out





# **Compute/Storage Disaggregation**



 Storage and Compute are not in the same enclosure – DAS replacement

- Architecture enabled by NVMe-oF
  - Low latency and High bandwidth a must





- Better utilization: capacity, rack space, and power
- Better scalability
- Management
- Fault isolation





# How Does NVMe-oF Maintain NVMe Performance?

- Extends NVMe efficiency over a fabric
  - NVMe commands and data structures are transferred end to end
- Relies on RDMA for performance
  - Bypassing TCP/IP







# What is RDMA?

- Remote version of DMA(Direct Memory Access)
- Memory to memory move with out CPU
- Transport layer in RNIC
- RDMA protocol is part of the NVMe-oF standard
  - NVMe-oF version 1.0 includes a Transport binding specification for RDMA





## RDMA barrowed from HPC





# RDMA & NVMe-oF: A Perfect Fit









# Network Congestion Management with RDMA

- Attention to congestion and data path quality are essential to maintain peak performance with RDMA on Ethernet
- Some of today's RoCE products require a lossless network implemented through PFC(IEEE Priority Flow Control)
- Some can also use ECN(IETF Explicit Congestion Notification) or both











# **Priority Flow Control**

Priority Flow Control (PFC) is similar to 802.3x Pause, except seven priority levels are added. When the data in any of the eight buffers gets to a certain level a pause is sent causing the upstream device to stop sending data only for that priority level for a specified amount of time. 802.1Qbb - Priority-based Flow Control





# **Explicit Congestion Notification**

RFC 3168 Explicit Congestion Notification (ECN) slows down a explicit device's data rate that is believed to be overflowing another devices buffer.





# UNH IOL Successful Multivendor Interoperability Test

- UNH-IOL neutral multi-vendor interoperability testing since 1988
- This May hosted the first test for NVMe-oF
- Test coincide with regularly scheduled bi-yearly NVMe testing
- Test plan called for participating vendors to mix and match their NICs in both Target and Initiator positions
- Testing was completely successful with near line rate performance at 25Gb/s also achieved





# NVMe-oF Products Available Today

#### Just a sample of the market - not all inclusive list

- SuperMicro
- Wistron
- Pavillion
- Mangstor
- E8
- Excelero
- Pavilion
- AIC
- Sanmina

#### Adapters/SOC

- Mellanox
- Cavium
- Broadcom
- Chelsio

#### **SSD** Reference Designs

- Samsung
- Micron
- Toshiba
- Kingston
- WD
- Seagate





- New storage technology is moving the performance bottle neck for networked storage from the storage devices to the network – "<u>Faster Storage needs Faster Networks</u>"
- The Industry is responding with faster speeds and a new protocol called NVMe over Fabrics(NVMe-oF)
- RDMA technology is essential to high NVMe-oF performance
- This performance will enable many new networked storage solutions
- Early products and SSD vendor reference designs are already available



### **Questions?**



### Thanks!

#### Rob Davis Vice President Storage Technology, Mellanox