

Enterprise Flash Storage Annual Update

Or how the data center is replacing spinning rust with solid state

Santa Clara, CA August 2017

Flash Memory Your not so Humble Speaker

- 30+ years of consulting & writing for trade press
- Occasional blogger at TechTarget
- Chief Scientist DeepStorage, LLC.
 - Independent test lab and analyst firm
- Cohost Greybeards on Storage podcast
- @DeepStorageNet on Twitter
- Email:Hmarks@DeepStorage.Net

- A quick update on flash and enterprise SSDs
- PCIe/NVMe rising
- NVMe over fabrics and the new tier 0
- Post Flash and persistent memories

Flash Has Won

- Over 85% of VNX/FAS have some flash
- Even SMB solutions are now flash driven
 - Nexsan's Unity hybrid only
- AFA market \$1.7 billion Q4 2016
 - External storage down 6.7%
 - AFA up 61.2%
- Hybrids \$2.5 billion (38% market share)

Source: IDC Worldwide Quarterly Enterprise Storage Systems Tracker

Evolution of Enterprise Flash

2010

- 100K+ IOPS
- Consistent submillsec latency
- Go fast for special cases

2012

- Still a point solution
- Becoming cost
 effective
- Limited data services
- Data reduction

2016

- Flash is mainstream
- Full data services & data reduction
- Cost effective for most applications
- New solutions for new applications

- All flash is inevitable
- Facebook...
- Murphy's law
- Growing our TAM

- Flash cheaper than disk, really?
 - No enterprise SSD 25X cost/ GB of 8TB disk
- Kryder's law

- Smaller cells were denser, cheaper, crappier
 - Beyond 15nm untenable
- All 4 foundries
 - Samsung, Toshiba/WD 64L 512GB
 - Intel/Micron 32L (64L, 256GB)
 - Hynix 48L 256GB (72L, 256GB)
- 3D allows larger cells
 - Makes TLC useable

 Faster write, higher endurance
 - QLC even

- 2008-2015 SSD \$/GB -30%/yr
- **2016**
 - Fabs stumble on 3D conversion
 - Prices flat to +30% from the usual suspects
 - SSD lead times up to 120 days
 - Vendors shift from client to enterprise
- Note: DRAM prices also up (50% or more)
 - Fabs can switch back and forth (w/limits)
- Relief to come late 2018/19

- Media
 - 3D TLC now standard
- Density Today's largest devices
 - SAS 15.8TB SATA 4TB
 - PCIe 64TB AIC, 7.6TB U.2, 8TB M.2
- Interfaces
 - Last year U.2 was the big thing
 - Dual port U.2
 - Server support from most vendors

- Adds x4 PCIe 3.0 lanes to SAS/SATA connector
 - Dual ports to x2
- In servers from all the major players
 - Making PCIe/NVMe SSDs hot swappable
- Moving into storage arrays
 - Tegile
 - Pure FlashArray (in-house)

- 4x PCIe or SATA channels
 - Same as U.2
- "Wrigley" form factor
- Server vendors replacing SD with M.2 for boot devices
- Plug in std slot w/low cost adapter.
- Seagate's 64TB SSD is 8x8TB M.2^{attery} SSDs and a PCIe switch chip
- Eight M.2 Slots on Microsoft Project Olympus server (Azure)

- 3.5 large form factor
- 6Gbps not 12Gbps SAS
- I Drive Write per Day endurance
 - But 1.7 days to fill at spec'd 500MB/s
- Different use model:
 - Hyperscaler's long tail
 - Long term retention

- Field configurable SSDs
 - SSD has xGB flash
 - User chooses balance between useable capacity & endurance
 - Sophisticated users, like webscalers
- Host Managed SSDs
 - Give host system control of garbage collection
 - System can avoid writes to drive in GC
 - More consistent latency

- PCIe offers:
 - Low latency, high bandwith, RDMA
- PCIe Switch chips
 - PLX and PMC 96 lane
- Use for:
 - Controller to controller link
 - U.2 SSDs in storage system
 - Rack scale switched system (DSSD)
 - External PCI standards exist

- Gen1 and 2 PCI SSDs
 - ACHI (SATA command set)
 - Propreatary (Fusion-IO, Verident) with heavy software
- Enter NVM Express
 - A new software protocol for non-volatile memory access
- Lower compute overhead than SCSI
- 64K queues of 64K entries vs SCSI 1 queue of 32 entries

App to SSD IO Read Latency (QD=1, 4KB)

■ NVM Tread ■ NVM xfer ■ Misc SSD ■ Link Xfer ■ Platform + adapter ■ Software

In 2016 NVMe is leading from desktop M.2 to the datacenter

- We've redefined tier 1
 - 100,000s of IOPS
 - Sub-millisecond latency
 - 100s TB useable capacity
 - Rich data services
 - Back to \$/GB
- A new tier 0 emerges
 - 1,000,000s of IOPS
 - Latency under 100µsec
 - Application resiliency
- NVMe over network

- EMC DSSD
 - Rack scale (48 hosts) switched PCIe
 - Very custom hardware
 - Block, key-value, direct memory APIs
- Several NVMe over Network startups
 - Apeiron 40Gbps Ethernet switch in JBOF
 - E8 Dual controller array basic services
 - Mangstor x86 NVMEoF target
 - Excellero Low CPU SDS, RDMA

- Extends/encapsulates NVMe semantics over
 - Ethernet with RMDA
 - ROCE RDMA over Converged Ethernet
 - iWARP RDMA over TCP
 - Fibre Channel
 - Infiniband (no products yet announced)
- Adds name spaces and discovery
- 10-50 usec protocol and network overhead

Compute servers

Storage Fabric

NVMf Arrays

- NVMe over Fabrics standard announced at FMS
 - Drivers now in all major OSes/Hypervisors
 - Intel SPDK high performance requestor and target
- DellEMC cancels DSSD
 - Promises tech will live on in other products

Pure FlashArray//x

- Replaces //m SAS SSDs with NVMe flashmodules
- Expansion via SAS or NVMEoF JBOF
- NVMEoF target on 40Gbps Ethernet
- Full services

Flash Memory Kaminario K2 Composeable

NVMEoF

- Controller to JBOF
- Host to array (opt)
- Dynamically assign controllers and flash to virt array

- Today's JBOFs are x86 servers
 - Dual servers needed for HA
 - High flexibility
 - High cost
- NVMEoF ASICs
 - Vastly reduce costs
 - Sampling from
 - SolarFlare Xilinx
 - Kazan Networks

- Scaleable Xeon servers come with NV-DIMM support
 - Good for software delivered storage
 - Small (8GB)
- Large persistent memory the next big thing
- Today's In-Memory database must log writes
 - Fast storage still required
- Tomorrow RDMA into another node's NVmem

- Memory Channel Flash (SanDisk UltraDIMM)
 - Block storage or direct memory
 - Write latency as low as 3µsec
 - Requires BIOS support
- Memory1
 - 400GB/DIMM
 - No BIOS/OS Support
 - Volatile

- All PCIe NVMe storage systems
 - As conventional storage
 - With memory interfaces
- Next-gen memory (PCM, 3d Xpoint, Etc)
 - First as write cache in SSD
 - Later as memory
 - Taking a bit longer than expected
- More persistent memory as memory
 - Needs application support ala SAP Hana

