Is 2017 the Year of Emerging Memories?

Dr. Seshubabu Desu

Chief Technology Officer 4DS Memory Limited Fremont, CA sbdesu@gmail.com

FMS-August 2017

DRAM Scaling Limitations

NAND Scaling Limitations

Semiconductor Memories

Recent Success of Emerging Memories

Storage Class Memories 3D-Xpoint based Optane Memories and Storage by Intel

You can buy 3D-Xpoint Memory from FRYS!

Desu-2017

Principle of Phase Change Memory (PCM)

Desu-2017

3D-Xpoint Memory and Storage

Intel® Optane™ Solid State Drives for Consumers | Intel® Optane™ Technology Data Center Solutions Desu-2017

INTEL® OPTANE™ MEMORY OFFERS BETTER END USER VALUE

16GB Intel® Optane™ memory + 1TB HDD 4GB DDR delivers better responsiveness than 1TB HDD 8GB DDR

Responsive Under Load

Recent Success of Emerging Memories contd.

Niche Applications

- EverspinTM has used its Toggle-MRAM in high cycle, high reliability applications and is pushing upwards in density with STTRAM
- AdestoTM has used CBRAM to undercut the cost of EEPROMs and is pushing its technology into NOR densities
- PanasonicTM has effectively used metal- oxide RRAM as an embedded memory

Everspin announced it is sampling a Gbit MRAM chip

• Gbit chip uses a DDR4 interface and is made in Globalfoundries' 28nm process

Adesto Introduces Ultra Low Power EEPROM Mavriq™ DS Memory Family up to 512Kbit density

- It is built on Adesto's RRAM technology, known as Conductive **Bridging RAM (CBRAM®)**
- **It performs read and write** operations with 4x less power than competitive solutions, and, in ultra-deep power down mode, uses as much as 50x less power.
- **Provides over 100,000 write cycle endurance across the full temperature and voltage range**

Desu-2017

Panasonic and UMC Partner for 40nm ReRAM Process Platform

- **Enable the integration of PSCS's 40nm ReRAM with UMC's CMOS process to achieve a ReRAM technology platform that incorporates embedded memories** in place of flash
- **Expected to ship product samples based on UMC's 40nm process in 2018**

STT-MRAM

The difference in resistance between Parallel and Anti-Parallel spin arrangements of MTJ is the key for STT-MRAM

Free Layer

Barrier Layer

Fixed Layer

High R Low R

• Read operation by probing the resistance of the device at low voltage bias

Thermal Stability Factor (Δ) is the key metric of an MTJ

High thermal stability factor ($Δ$) is required to reduce the erroneous sensing rate

$$
F_{\text{chip}} = 1 - \exp\left[-N\frac{\tau}{\tau_0} \exp\left(-\Delta\left(1 - \frac{I_R}{I_{\text{CO}}}\right)\right)\right]
$$

Desu-2017

Write operation consists of transfer of spinangular momentum from polarized conduction electrons to electrode magnetization

As electrons move through the fixed layer, their spin is polarized to match the fixed layer. When a sufficient density of polarized **electron flow is achieved, the free layer** changes state to align with the fixed layer

Current Direction

In this switching direction, electrons with spin opposite the fixed layer are reflected **back to the free layer causing the free** layer to switch to the state opposite to the fixed layer

Trade-offs of STT-MRAM Writing

• Non-Deterministic Write

- **STT write process is inherently** stochastic (sigmoidal distribution with *very long tail)*
- **The stochasticity of switching Hime** is **temporal** (leading to variation *in transition time for a single cell)*
- STT vanishes for parallel alignment
- Switching time inversely proportional to angle between the layers
- Thermal fluctuations provide initial 'kick'

STT stochastic switching behavior

- Increasing the write current value I_{WR} or driver pulse duration are the most efficient methods to avoid the writing failures
- But lead to significant power, speed, surface overhead storage, and could drive the breakdown or damage of oxide barrier

Major Challenge for STTRAM

MTJ stack is about 20 nm thick, can be easily integrated into CMOS backend process: ~3 additional masks

STT-MRAM is well suited for Embedded

- Combines non-volatility, high speed, and infinite endurance
- Higher energy efficiency (mobile and IoT applications)
- Opportunity for eMRAM as Last Level Cache
- Lower Cost

Global Foundries has plans to deploy Everspin's p-MTJ STT-MRAM as an embedded 22nm memory - as part of GF's 22FDX platform.

Claims for 22FDX-eMRAM:

- 1,000x faster write speeds
- 1,000x higher endurance
- Scalable beyond 22nm (FinFET or FDX)

Desu-2017

Samsung reaffirms 2018 target for STT-MRAM mass production

TSMC to start eMRAM production in 2018

STT-MRAM may not replace DRAM in the nearfuture

- Cost is directly related to density & cell/chip size
- Current available scales with transistor size
- Standalone DRAM : GB chips, cell size ~4F2 **F** smallest feature at technology node (16/14nm,...)
- \cdot MTJ < 20 nm
- Write current < 20 μA
- \cdot TMR \sim 300%

Kent & Worledge, Nature Nano (2015)

Filament RRAM

Adesto 512 Kbit EEPROM-compatible CBRAM

- Single supply voltage: 1.65V 3.6V
- **1.6 MHz maximum clock rate for normal read**
- **20 MHz maximum clock rate for fast read**
- Byte Write consuming 50 nJ
- 0.25 mA Read current; 1 mA Write current
- **Byte Write within 25 μs**
- Data Retention: 10 years
- **Endurance: 10,000 Write Cycles**
- **Unlimited Read Cycles**

Te---Metalloid Filament!!

Panasonic ReRAM Technology-TaOx based

Relationships between CF characteristics and density of Vo and retention characteristics

Desu-2017

In addition to the process variations, Filament formation, rupture and regrowth are stochastic processes!!

Top electrode (TE)

- Local high fields can change due to change in nature of defects and their concentrations (> 1 MV/cm)
- Local power dissipation can alter the local temperatures (\sim 1 TW/cm³)
- Local electronic current densities can vary (> 10⁶ A/cm²)
- **Significant local variations in ionic current densities**

Extensive optimization needed to engineer the tail bits

Desu-2017

Verify

& ECC

Filamentary ReRAM Distribution Example

Filamentary read current fluctuations

Fig. 1. Measured and calculated distributions of (a) R and (b) $R(t)/R_0$ for increasing times 700, 7 \times 10³, and 7 \times 10⁵ s. Note the increasing tails in (b) due to current fluctuations. Selected cells A, B, and C are also shown in their
final position within the distributions at $t = 7 \times 10^5$ s.

Fig. 2. Measured R as a function of time for cells A, B, and C in Fig. 1, showing RW occurring at t_{RW} and interrupted RTN lasting for time t_{ON} .

Source: IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 62, NO. 11, NOVEMBER 2015 Noise-Induced Resistance Broadening in Resistive Switching Memory-Part II: Array Statistics Prof. Daniele Ielmini, Senior Member, IEEE, Politecnico di Milano, Milan, Italy

Ferroelectric Switching in thin HfO2 Films

- The stable ferroelectric phase in HfO2, the orthorhombic phase Pca2₁.
- **The movement of four active oxygen atoms mainly contributes to the ferroelectric switching.**
- **The crystal distortion is driven by symmetry conserving phonon modes**

Typical FeFET structure

Trench-based 3D FeFET memory

Desu-2017

Oxygen vacancies movement during wake-up in Ferroelectric Hafnium Oxide

S. Starschich, et al, Appl. Phys. Lett. 108, 032903 (2016)

- The duration of the applied **electrical field, not the amount** of cycles, is essential for the **wake-up**
- **A strong temperature** activation of the wake-up
- **Attributed to ion rearrangement during cycling**
- **Resistive valence change** mechanism switching can be **observed coincident with ferroelectric switching** depending on electrodes

Challenges and Opportunities of EM

Switching Speed Limitations

Multilevel Challenges

Endurance Limitations

Read and Write Disturb

Emerging Memory Opportunities

- **SCM: 3D-Xpoint**
- Niche Applications: CBRAM for EEPROMs and NOR
- **Embedded Memories: STTRAM and Filament RRAM**
- No EM technology, at this point, that is a serious contender against **NAND: lack of MLC, 3-D, etc**
- No EM technology that can compete with the lower energy and high bandwidth of DRAM, which are directly a result of the DRAM cells **low operating energy**

Thanks

Questions and/or Comments

ReRAM Comparison

STT switching current inversely proportional to pulse width but scales with area

Desu-2017

Features and Applications of Panasonic ReRAM (0.18 µm)

EMBEDDED MCU (MN101LR05D)

Fujitsu Semiconductor Launches World's Largest Density 4 Mbit ReRAM Product for Mass Production

Key Specifications

- Product Part Number: MB85AS4MT
- Memory Density (configuration) : 4 Mbit (512K words x 8 bits)
- Interface : Serial peripheral interface (SPI)
- Operating power supply voltage: 1.65V 3.6V
- Low power consumption :
	- Read operating current : 0.2mA (at 5MHz)
	- o Write operating current : 1.3mA (during write cycle time)
	- o Standby current: 10µA
	- o Sleep current : 2µA
- Guaranteed write cycles : 1.2 million cycles
- Guaranteed read cycles : Unlimited
- Write cycle time (256 byte page) : 16ms (with 100% data inversion)
- Data retention : 10 years (up to 85°C)
- · Package: 209mil 8-pin SOP

Everspin 256Mb DDR3 Spin-Torque MRAM

EMD3D256M[08G1/16G2]

FEATURES

- Non-volatile 256Mb (32Mb x 8, 16Mb x 16) DDR3
- Supports standard DDR3 SDRAM features
- $V_{DD} = 1.5v +/- 0.075v$
- Up to 667MHz ^fCK (1333MT/sec/pin)
- Page size of 512 bits (x8) or 1024 bits (x16)
- On-device termination
- On-Chip DLL aligns DQ, DQS, DQS transition with CK transition
- All addresses and control inputs are latched on rising edge of Clock
- Burst length of 8 with programmable Burst Chop length of 4
- Standard 10x13mm 78-Ball (x8) or 96-ball (x16) BGA Package

Breakthrough Performance

4K 70/30 RW Performance at Low Queue Depth Intel[®] Optane™ SSD DC P4800X 4K 70-30 - Intel® SSD DC P3700 4K 70-30 600,000 500,000 400,000 OPS $5x$ 300,000 200,000 100,000 8X \circ 11 12 13 14 15 16 $\mathbf{1}$ $\overline{2}$ 10 **QUEUE DEPTH**

5-8x faster at low Queue Depths¹

Vast majority of applications generate low QD storage workloads

