

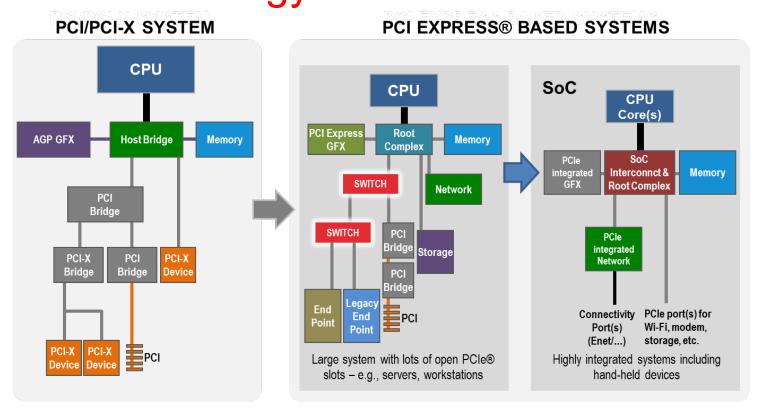
Fast Tracking the Evolution of PCI Express® Technology

Dr. Debendra Das Sharma

Member, PCI-SIG Board of Directors
Senior Principal Engineer and Director of I/O
Technologies and Standards
Data Center Group, Intel Corporation

- Introduction: Evolution of PCI Express Technology
- Power-efficient Performance
- RAS Enhancements
- I/O Virtualization
- Form Factors
- Compliance
- Conclusions

Memory Evolution of PCIe® Technology



- Peripheral Component Interconnect (PCI) started as bus-based PC interconnect in 1992
 - Evolved through width/speed increases
- Moved to link-based serial interconnect with full-duplex differential signaling with PCI Express® (PCIe®) with backwards compatibility for software
 - Currently in fifth generation, with bandwidth doubling every generation
- Evolution from PC to HPC, servers, clients, hand-held, and Internet-of-Things usage over three decades

Evolution of PCI/PCIe® Technology

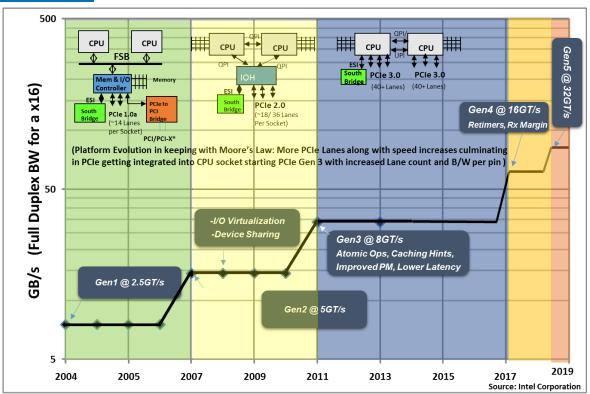
Memory PCIe® Technology Roadmap

PCle 5.0 @ 32GT/s

PCIe 4.0 @ 16GT/s

PCIe 3.0 @ 8GT/s

PCIe 2.0 @ 5.0GT/s


Continuous improvement with data rate as well as usage models; doubling bandwidth and improving capabilities

PCIe 1.0 @ 2.5GT/s

Flash Memory Evolution of PCIe in Platforms

- Continuous Improvement: Data Rate, Protocol enhancements. Power enhancements, Formfactor, and Usage Models
- Doubling Bandwidth & Improving Capabilities Every 3-4 Years
- Relevant through evolution of platforms across multiple market segments

PCIe® Architecture Layering for Modularity and Reuse

Software

- Transaction

 Data Link

 Logical PHY

 Electrical
 - Mechanical

- PCI compatibility, configuration, driver model
- ⇔ PCIe architecture enhanced configuration model
- Split-transaction, packet-based protocol
- Credit-based flow control, virtual channels
- Reliable data transport services (CRC, Retry, Ack/Nak)
- Physical information exchange
- Interface initialization and maintenance
- Market segment specific form factors
- Evolutionary and revolutionary

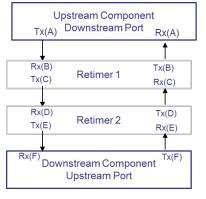
- Introduction: Evolution of PCI Express Technology
- Power-efficient Performance
- RAS Enhancements
- I/O Virtualization
- Form Factors
- Compliance
- Conclusions

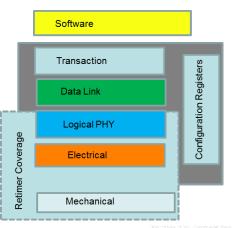
Delivering Power Efficient Performance

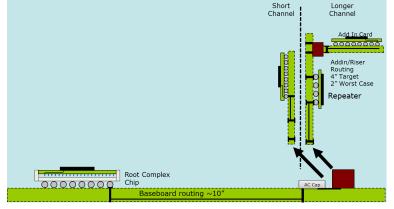
- Delivers scalable performance
 - Width scaling: x1, x2, x4, x8, x12, x16, x32
 - Frequency scaling: Five generations
 - 2.5 and 5 GT/s w/ 8b/10b; 8 and 32 GT/s with 128b/130b encoding
 - Low power (active/idle)
 - Rich set of Link (L0s, L1, L1-substates,
 L2/ L3) and device (D0, D1, D2, D3_hot/cold) states
 - Platform-level power optimization hooks: Dynamic Power Allocation, Optimized Buffer Flush Fill, Latency Tolerance Reporting
 - Active power 5pJ/b, Standby power: 10 uW/Lane*
 - Vibrant ecosystem with IP providers

Item	PCle® 3.0	PCle® 2.0
Line Speed [Gbps]	8	5
PHY Overhead	128/130, 1[GB/ s]	8/10, 500[MB/s]
Active Power [mW]	60 (L0)	46 (L0)
Standby Power [mW]	0.11 (L1.2)	0.11 (L1.2)
MB/mJ (higher = better)	14-18	8-12

Source: Intel Corporation (IDF, Sept 15)


* http://news.synopsys.com/2015-05-21-Synopsys-Announces-Industrys-Lowest-Power-PCI-Express-3-1-IP-Solution-for-Mobile-SoCs


PCIe® 4.0 and 5.0 Architecture Speed and Channel



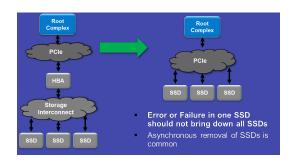
- PCIe 5.0 specification data rate: 32GT/s; PCIe 4.0 specification data rate: 16GT/s (fully backwards compatible)
- Connector improvements to reduce cross-talk and improve insertion loss at 8G Nyquist
- 2 connector 20" server PCIe topology needs either re-timer or ultra low-loss PCB to operate at 16 or 32 GT/s
- Re-timer part of base specification

Flash Memory Summit 2017 Santa Clara, CA

Source: Intel Corporation

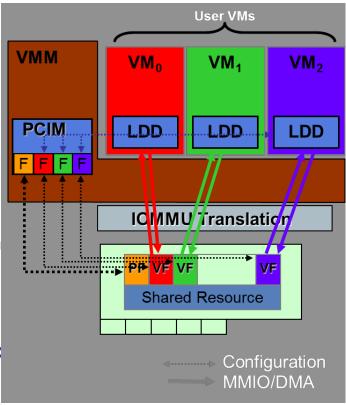
- Introduction: Evolution of PCI Express Technology
- Power-efficient Performance
- RAS Enhancements
- I/O Virtualization
- Form Factors
- Compliance
- Conclusions

RAS Features


- PCIe® architecture supports very high-level set of Reliability, Availability, Serviceability (RAS) features
 - All transactions protected by CRC-32 and Link level Retry, covering even dropped packets
 - Transaction level time-out support (hierarchical)
 - Well defined algorithm for different error scenarios
 - Advanced Error Reporting mechanism
 - Support for degraded link width / lower speed
 - Support for hot-plug

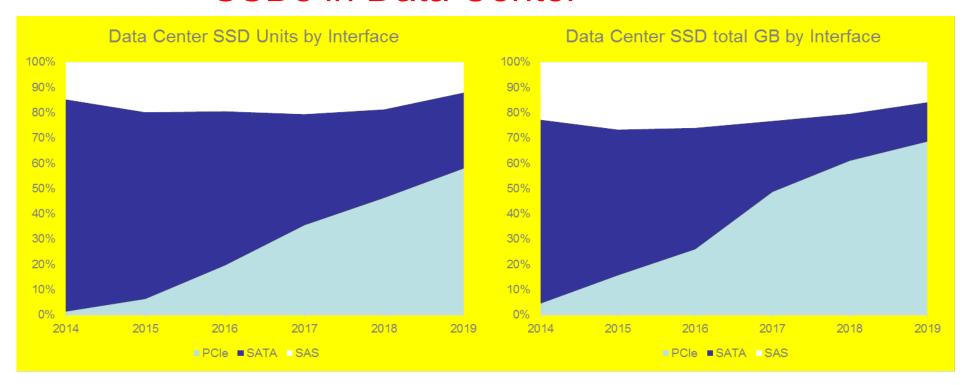
DPC/ eDPC Motivation and Mechanism

- Recently added (enhanced) Downstream Port Containment (DPC and eDPC) for emerging usages
- Emerging PCIe architecture usage models are creating a need for improved error containment/recovery and support for asynchronous removal (a.k.a. hot-swap)
- Defines an error containment mechanism, automatically disabling a Link when an uncorrectable error is detected, preventing potential spread of corrupted data
- Reporting mechanism with Software capability to bring up the link after clean up
- Transaction details on a timeout recorded (side-effect of asynchronous removal)
- eDPC: Root-port specific programmable response to gracefully handle DPC downstream


- Introduction: Evolution of PCI Express Technology
- Power-efficient Performance
- RAS Enhancements
- I/O Virtualization
- Form Factors
- Compliance
- Conclusions

I/O Virtualization

- Reduces System Cost and power
- Single Root I/O Virtualization Specification
 - Released September 2007
 - Allows for multiple Virtual Machines (VM) in a single Root Complex to share a PCIe adapter
- An SR-IOV endpoint presents multiple Virtual Functions (VF) to a Virtual Machine Monitor (VMM)
 - VF allocated to VM => direct assignment
- Address Translation Services (ATS) supports:
 - Performance optimization for direct assignment of a Function to a Guest OS running on a Virtual Intermediary (Hypervisor)
- Page Request Interface (PRI) supports:
 - Functions that can raise a Page Fault
- Process Address Space ID enhancement to support Directors assignment of I/O to user space



- Introduction: Evolution of PCI Express Technology
- Power-efficient Performance
- RAS Enhancements
- I/O Virtualization
- Form Factors
- Compliance
- Conclusions

NVM Express[™] Driving PCIe® SSDs in Data Center

Flash Memory Summit 2017 Santa Clara, CA

Source: Forward Insights Q1'15

Data Center Form Factors for PCI® Architecture

BGA

16x20 mm ideal for small and thin platforms

M.2

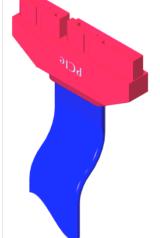
42, 80, and 110mm lengths, smallest footprint of PCI Express® (PCIe®) connector form factors, use for boot or for max storage density U.2 2.5in (aka SFF-8639)

2.5in makes up the majority of SSDs sold today because of ease of deployment, hotplug, serviceability, and small form factor Single-Port x4 or Dual-Port x2

CEM Add-in-card

Add-in-card (AIC) has maximum system compatibility with existing servers and most reliable compliance program. Higher power envelope, and options for height and length

Flash Memory Summit 2017 Santa Clara, CA



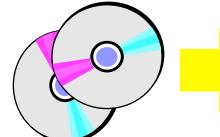
Inexpensive Cabling = Ind. Clock + Spread Spectrum (SSC) (SRIS)

- Challenge: PCIe® specification did not support independent clock with SSC
- SATA* cable ~ \$0.50
- PCIe cables include reference clock > \$1 for equivalent cable
- PCIe base specification 3.0 ECNs approved
 - 1) Requires use of larger elasticity buffer
 - 2) Requires more frequent insertion of SKIP ordered set
 - 3) Requires receiver changes (CDR)
 - 4) Second ECN updates Model CDRs
- SRIS will create a number of new form factor opportunities for PCIe technology
 - OCuLink*
- Lower cost external/internal cabled PCIe technology
- Next generation of PCI-SIG® cable specification

Example of possible PCIe® cable

- Introduction: Evolution of PCI Express Technology
- Power-efficient Performance
- RAS Enhancements
- I/O Virtualization
- Form Factors
- Compliance
- Conclusions

PCIe® Compliance Process



C&I Test Spec

PASS

PCI-SIG® Specs Describes

Device requirements

 3.0 Base and CEM specs

C&I Test Specs Define

Test criteria based on spec requirements

- Test Definitions
- Pass/Fail Criteria

Test Tools
And Procedures

Test H/W & S/W

Validates

Test criteria

- Compliance
- Interoperability

Clear Test Output Maps

Directly to Test Spec

Flash Memory Summit 2017 Santa Clara, CA

Predictable path to design compliance

- Introduction: Evolution of PCI Express Technology
- Power-efficient Performance
- RAS Enhancements
- I/O Virtualization
- Form Factors
- Compliance
- Conclusions

Data Center / HPC Mobile Embedded
Source: Intel Corporation

- Single PHY standard covering applications and form factors from handheld to data center
- Predominant direct I/O interconnect from CPU with high bandwidth
- Low-power
- High-performance
- Active development to extend PHY rate to 32 GT/s
- A variety of standard form factors covering applications from small/light mobile to the data center
- A robust and mature compliance and interoperability program