

3D-NAND scaling & 3D-SCM – Implications to Enterprise Storage

Jung H. Yoon, Ranjana Godse IBM Supply Chain Engineering

Gary Tressler IBM Flash SSD Development

Hillery Hunter IBM Research

The Current Storage Model is being Disrupted by the Explosion of Data and Need for Speed

Data Economics

40% more data per year for storage

Data Explosion

- 2.5 Billion Gigabytes of data per day
- 90% of data created in last two years

Data Innovation

- 30% lower TCO with Flash
- 50% lower storage management cost with software defined storage

Cognitive Computing will change the business & needs of Data Storage

- The digital world generating oceans of data which must be efficiently stored, managed, and protected as well as used by the right applications at the right time
- Storage Model disruption driven by Si technology innovations: 3D-NAND and 3D-SCM technologies

1. Enterprise Flash-SSD Exabyte Growth	 3D NAND enabling 512Gb /1Tb densities in 2017-2018 3D-TLC density and reliability allowing strong penetration to enterprise storage, read intensive applications Stacked packaging – 8DP/16DP/32DP, TSV
2. 3D NAND Scaling	 3D NAND scaling allowing path for density growth, bit cost reduction to 2022+ Interest in 3D-QLC for further bit cost reduction, focused on Cold storage, TLC/QLC Tiering
3. NVMe Adoption in Server and Storage systems	 NVMe based storage systems expected to enable significantly lower latencies - speed data to and from storage solutions and systems PCIe Gen4 provides significant processor ability to absorb data, acceleration expected in 2018
4. Storage Class Memory enablement	 Multiple deployment options under exploration PCIe NVMe block attach for initial time to market PCIe memory mapped, memory bus attach for highest performance, SCM memory assessable via Open Capi high bandwidth, low latency I/F
5. Development of "Flash" Focused form factor	 New SSD form factors optimized for flash deployment 3D-NAND die, package form factors, Gb/mm^3 critical

A new category of 'Big Data Flash'

- Many workloads do not require the write performance and endurance of Enterprise Flash
- Priorities are centered at high density, low cost, and good read performance enablement driven by 3D-TLC & QLC scaling

- Flash scaling continues via 3D NAND layer count increase enabling 512Gb~1Tb & higher density TLC /QLC Flash in 2017-2018
- Cost per bit reduction will continue via 3D NAND scaling 2017-2022+
 - 3D-NAND scaling provides clear path for flash density growth 512Gb 3D-TLC in 2H17 (64L), 1Tb QLC in 2018
 - 3D NAND scaling expected to continue on a 18 months cadence thru 2020 48L >64L > 96L >120L+
 - 3D-NAND (TLC/QLC) \$/GB cost take down delivering Flash TCO advantages

3D production bit share

Industry wide transition 3D NAND enabling 512Gb+ densities in 2H17 with significant fab CAPEX investments

- 3D NAND's improved cell reliability enables TLC usage for enterprise storage applications, while driving bit cost reduction – strong penetration of 3D TLC in Enterprise SSD/Storage
- Significant fab investments ongoing for new flash Fabs in 2017-18
- TLC current accounts for ~50% industry output, will exceed >80% in 2019
- QLC introduction in 2018 at 1Tb+ densities, ramp up in 2019
 - Focus on Archive & Cold Storage Applications targeting Near Line HDD market
 - QLC/TLC Tiering applications

Flash Memory Summit 2017 Santa Clara, CA

- Exponential Flash growth anticipated thru 2020, driven by 3D-NAND scaling, scaling cadence @ 18 months/generation
- Wide usage of 3D TLC in Cloud Datacenter & Enterprise Server Applications starting in 1H17.
- 3DXP and 3D-ReRAM \$/GB positioned between DRAM & NAND, slope will depend on scaling approaches & technologies

- 1. 3D NAND bit cost (simple model) $\propto \frac{1}{N}$
- 2. Additional Staircase Contact adds process cost
- 3. Added Area for Decoder WL decoder area needed to reduce RC delay
- 4. Bit cost reduction > 120 layers will require vertical channel etch, innovation in decoder/peripheral design /layout, F & z-directional wordline-to-wordline pitch reduction
- 5. Fab wafer ramp-up, edge die yield & quality maturity key in 3D NAND bit cost.

	2016	2017	2018	2019	2020
3D NAND Generation	32/48L	64L	64/96L	96L	96/128L
Max density (TLC/QLC)	256Gb+	512Gb	1Tb	1Tb+	1-2Tb+

Source: Applied Materials, IEDM, VLSI

* Process challenges anticipated with > 120 layer 3D NAND scaling-commons.com process innovations required in High AR multiple pass Channel Etch , Stair case contact process, defect control, wafer edge variability & quality, wafer yield

Flash Memory Summit 2017 Santa Clara, CA

• Density

✓ 512Gb 3D-TLC, 1Tb 3D-QLC Flash density in 2017-2018

Reliability

- ✓ Driven by lower Cell-to-Cell Interference & Tighter V_t distribution with P/E cycling
- Sustained reliability (Endurance, Data Retention, Read disturb etc.) characteristics with 3D-NAND scaling (48L > 64L> 96L...)
- ✓ QLC density & bit cost advantages vs reliability tradeoff

Performance

- Faster t_{PROG} due to 1 pass programming algorithm due to reduced Cell-to-Cell interference, Dual/Triple pages simultaneous programming with less programming steps
- ✓ Sustained/improved performance parametrics (t_{Read}, t_{PROG}, t_{BERASE} etc.) with 3D NAND scaling
- ✓ QLC performance vs density/cost tradeoffs need to be understood for TLC replacement consideration

Power Efficiency

- ✓ Potential Power reduction driven by t_{PROG} reduction
- ✓ Additional Power reduction by additional plan programming (2 vs 4 plane)
- ✓ High density 3D-TLC enables flash based system's lower TCO

Memory and Storage Hierarchy

System Architecture - Memory Tiers

Storage Class Memory – Key Comparison

- Number of critical masks increase with added number of layers
- Requires Advance
 Lithography
- ReRAM cell principle is same as Vertical ReRAM

- masks do not increase with added number of layers
- 3D NAND like process
- Challenging to integrate
 the selector

- Cross Point 3D-ReRAM scalability strongly lithography dependent due to complexity/cost associated with high layer count 3D cell
- Vertical type 3D-ReRAM has a more complex cell structure switching and cell variability challenging. Long term scalability and cost reduction viewed positive

3D-ReRAM Reliability and Manufacturing challenges

- Endurance dependent on consistency of filament formation
- Data retention highly temperature dependent, discontinuity in conductive filament due to oxidation and diffusion effects
- Sneak path current leakage current path reducing resistance of 3D-ReRAM memory cell
- Cell variability significant challenge due to physics that depends stochastic nature of formation and dissolution of conductive filament

Resistive Switching MeOx ReRAM

Conductive Bridge ReRAM

- Current Storage Model is being disrupted by the explosion of data and need for speed
- Cognitive Computing changing the business & needs of data storage Storage Model disruption driven by Si technology innovations of 3D-NAND and 3D-SCM technologies & enablement
- Enterprise Storage driving need for Big Data Flash enabled by 3D-TLC/QLC's density, low cost, read performance
- Clear roadmap for 3D-NAND scaling into 2022+ timeframe, with layer counts exceeding > 250 Layers, Process technology & design innovations will need to continue for continued \$/GB reduction with scaling
- 3D-ReRAM focus as memory tier between 3D NAND and 3DXP technology enablement and maturity will need to continue for enabling densities into ranges that are interesting to enterprise storage