

Reusability and Flexibility in SSD Controller Design - A Platform Approach

A.Vityaev, A.Saxena, Mobiveil Inc.

Challenges Facing SSD Controller Designers

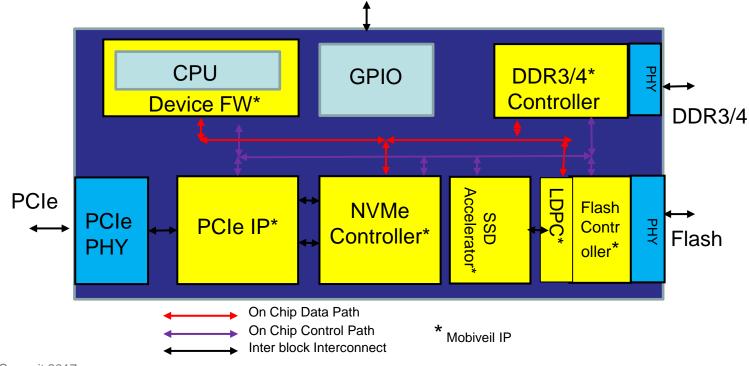
- Wide range of controller IC specs
 - Significant effort to design each IC \rightarrow Design reuse is critical
- Can Software-Development methodologies be applied?
 - Provides Flexibility and Reuse, often at expense of Reliability
 - Very different development environment
- Mobiveil is Silicon IP and Platform Provider
 - Wide range of customer requirements \rightarrow
 - → Requires **both** Reliability **and** Flexibility/Reuse

Mobiveil Storage Portfolio

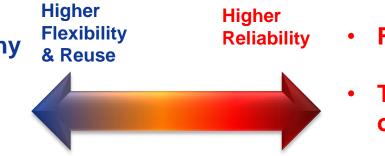
Silicon IP Blocks:

PCIe Gen4/3/2/1	НВМ	Quad-SPI	LDPC
NVMe 1.3	ONFI/Toggle	eMMC	FTL
DDR/LPDDR	Hyper Bus	U-NFC	

Platforms:


Flash Memory Summit 2017 Santa Clara, CA

NVMe SSD Controller Platform

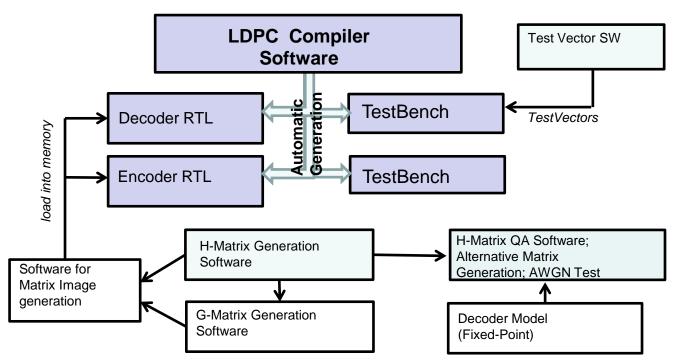


Flash Memory Summit 2017 Santa Clara, CA

Software vs. Chip Development

- More product revisions
- Complex code hierarchy
- Extensive use of external components
- Complex (API) interface
 between components

- Few product revisions
- Flatter code hierarchy
- Tightly controlled use of external components
- Transparent interface
 between components



Design Compilers

- Best solution for blocks with highest spec variability
- Software components generating final Verilog files
- Automatically generated Test-Benches for given parameters
- Software for generating Test Vectors
- Control via programmable state machines
 - Micro-Processor cores are not used

Example: LDPC Compiler

Benefits of Design Compilers

- Wide range of specifications for Silicon IP Cores that can be generated
- No increase in complexity of the generated IP Cores
 - Flexibility adds complexity to the Design Compiler, not to the resulting IP Core
- No added complexity for Real-Time Firmware
 - Configuration files are loaded at Start-Up or in Deep Recovery Modes

LDPC Compiler Spec Range

Range of key spec's that can be achieved in Compilergenerated IP Cores

*Maxima are set during compile time, after IP Core is generated, any value smaller than Max can be used

LDPC IP Core Spec	Range
Max code word size*	0 to >16KB
Max parity percentage*	0% to over 50%
Data rate (End-of-Life per core)	50MB/s to > 4GB/s
Max simultaneous LDPC codes* (On-the-Fly-switching)	1-8
Max number of LDPC codes (Off-line reprogramming)	Unlimited
Interface Buses Widths	Wide range

Functional Programmability

- Extensive use of programmable state machines and sequencers
 - Micro-processor cores are not used inside blocks
 - Provides design flexibility without affecting real-time FW
 - Simple / "Flat Hierarchy" solution → more reliable

Flash Reliability Subsystem / LDPC

Program user LDPC matrices

Programmable puncturing & padding

Programmable LUT select algo

Configurable soft-read procedure

Flash Interface Controller

Program an arbitrary command

Flexible timing control

Configurable address scheme

Configurable R/B scheme

Flash Memory Summit 2017 Santa Clara, CA

Component Interfaces

- Software approach (API) can not be used in hardware
 - In high-reliability software applications, "simple" interfaces are frequently used
- Standard interface buses used in Mobiveil Platform
- Configurable Interface and DataPath Widths

Flash Controller DataPath \rightarrow	Configurable Width	
LDPC DataPath \rightarrow	Configurable Width	
NVMe Controller DataPath \rightarrow	Configurable Width	

Configurability of Controller Components

SSD Controller

FTL in Hardware

Configurable Data Striping

Configurable Number of Data Pools

DDR3/4 Controller

Fully Configurable

NVMe Controller

Multi-Port or Single-Port

Configurable Number of IO Queues

Configurable IO Queue Depth

Configurable # of DMA Engines

Configurable Buffer Size

Configurable # of NV Memory Channels

For More Information

 "An FPGA-Based NVMe SSD Subsystem" Presentation at FMS Theater, Wed. 6pm

- Visit us at Mobiveil Booth #610
- Email to Info@Mobiveil.com